The exergy and energy level analysis of a combined cooling, heating and power system driven by a small scale gas turbine at off design condition

被引:91
作者
Chen, Qiang [1 ,2 ]
Han, Wei [1 ]
Zheng, Jian-jiao [1 ]
Sui, Jun [1 ]
Jin, Hong-guang [1 ]
机构
[1] Chinese Acad Sci, Inst Engn Thermophys, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
CCHP system; Off-design performance; Energy level analysis; Exergy; Distributed energy system; TRIGENERATION SYSTEM; PERFORMANCE ANALYSIS; CCHP SYSTEM; OPTIMIZATION; COGENERATION; EMISSIONS; OPERATION; FUELS;
D O I
10.1016/j.applthermaleng.2014.02.066
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper presents the off design performance analysis of a combined cooling, heating, and power (CCHP) system consisting of a small-scale gas turbine, an exhaust-fired double-effect absorption chiller, and a heat exchanger. The energy and exergy analyses of the CCHP system are investigated under the rated and part-load conditions. Energy level analysis is implemented on the energy conversion processes to reveal the mechanisms of the deterioration of the CCHP performance under part-load conditions. The results show that the CCHP system is energy saving when the power output of the gas turbine exceeds 30% of the full load. It is also found that the CO2 emission of the CCHP system reduced by 66.7%-70.5%, compared with conventional separation system, when the power output of gas turbine increased from about 30% to 100%. Energy level results reveal that the combustor of the small-scale gas turbine mainly contributed to the deteriorated performance of the CCHP system. In addition, a case study is carried out to illustrate the advantage of using dynamic data in the performance assessment. The case results indicate that using off-design data leads to a more realistic evaluation of the CCHP system. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:590 / 602
页数:13
相关论文
共 37 条
[1]   Thermodynamic modeling and multi-objective evolutionary-based optimization of a new multigeneration energy system [J].
Ahmadi, Pouria ;
Dincer, Ibrahim ;
Rosen, Marc A. .
ENERGY CONVERSION AND MANAGEMENT, 2013, 76 :282-300
[2]   Exergo-environmental analysis of an integrated organic Rankine cycle for trigeneration [J].
Ahmadi, Pouria ;
Dincer, Ibrahim ;
Rosen, Marc A. .
ENERGY CONVERSION AND MANAGEMENT, 2012, 64 :447-453
[3]   Multi-objective exergy-based optimization of a polygeneration energy system using an evolutionary algorithm [J].
Ahmadi, Pouria ;
Rosen, Marc A. ;
Dincer, Ibrahim .
ENERGY, 2012, 46 (01) :21-31
[4]   Greenhouse gas emission and exergo-environmental analyses of a trigeneration energy system [J].
Ahmadi, Pouria ;
Rosen, Marc A. ;
Dincer, Ibrahim .
INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2011, 5 (06) :1540-1549
[5]   Modeling and simulation of a gas turbine engine for power generation [J].
Al-Hamdan, QZ ;
Ebaid, MSY .
JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2006, 128 (02) :302-311
[6]   Trigeneration: A comprehensive review based on prime movers [J].
Al-Sulaiman, Fahad A. ;
Hamdullahpur, Feridun ;
Dincer, Ibrahim .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2011, 35 (03) :233-258
[7]  
American Society of Heating, 1989, ASHRAE HDB FUND
[8]   Thermodynamic and thermoeconomic analyses of a trigeneration (TRIGEN) system with a gas-diesel engine: Part I - Methodology [J].
Balli, Ozgur ;
Aras, Haydar ;
Hepbasli, Arif .
ENERGY CONVERSION AND MANAGEMENT, 2010, 51 (11) :2252-2259
[9]   Trigeneration in the food industry [J].
Bassols, J ;
Kuckelkorn, B ;
Langreck, J ;
Schneider, R ;
Veelken, H .
APPLIED THERMAL ENGINEERING, 2002, 22 (06) :595-602
[10]   Fundamentals of exergy analysis, entropy generation minimization, and the generation of flow architecture [J].
Bejan, A .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2002, 26 (07) :545-565