Adenosine a, receptor antagonist and mitochondrial ATP-sensitive potassium channel blocker attenuate the tolerance to focal cerebral ischemia in rats

被引:38
作者
Yoshida, M
Nakakimura, K [1 ]
Cui, YJ
Matsumoto, M
Sakabe, T
机构
[1] Yamaguchi Rosai Hosp, Dept Anesthesiol, Onoda, Yamaguchi 7560095, Japan
[2] Yamaguchi Univ, Sch Med, Dept Anesthesiol & Resuscitol, Yamaguchi, Japan
关键词
ischemic tolerance; adenosine; A(1) receptors; ATP-sensitive potassium channels; middle cerebral artery occlusion; mitochondria;
D O I
10.1097/01.WCB.0000122742.72175.1B
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Involvement of adenosine and adenosine triphosphate-sensitive potassium (K-ATP) channels in the development of ischemic tolerance has been suggested in global ischemia, but has not been studied extensively in focal cerebral ischemia. This study evaluated modulating effects of adenosine A, receptor antagonist DPCPX (8-cyclopentyl-1,3-dipropylxanthine) and mitochondrial K-ATP channel blocker 5HD (5-hydroxydecanoate) on the development of tolerance to focal cerebral ischemia in rats. Preconditioning with 30-minute middle cerebral artery occlusion (MCAO) reduced cortical and subcortical infarct volume following 120-minute MCAO (test ischemia) given 72 hours later. The neuroprotective effect of preconditioning was attenuated by 0.1 mg/kg DPCPX given before conditioning ischemia (30-minute MCAO), but no influence was provoked when it was administered before test ischemia. DPCPX had no effect on infarct volume after conditioning or test ischemia when given alone. The preconditioning-induced neuroprotection disappeared when 30 mg/kg 5HD was administered before test ischemia. These results suggest a possible involvement of adenosine A, receptors during conditioning ischemia and of mitochondrial K-ATP channels during subsequent severe ischemia in the development of tolerance to focal cerebral ischemia.
引用
收藏
页码:771 / 779
页数:9
相关论文
共 43 条
[1]   Identification and properties of a novel intracellular (mitochondrial) ATP-sensitive potassium channel in brain [J].
Bajgar, R ;
Seetharaman, S ;
Kowaltowski, AJ ;
Garlid, KD ;
Paucek, P .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (36) :33369-33374
[2]   Ischemic preconditioning and brain tolerance - Temporal histological and functional outcomes, protein synthesis requirement, and interleukin-1 receptor antagonist and early gene expression [J].
Barone, FC ;
White, RF ;
Spera, PA ;
Ellison, J ;
Currie, RW ;
Wang, XK ;
Feuerstein, GZ .
STROKE, 1998, 29 (09) :1937-1950
[3]   Role of adenosine in delayed preconditioning of myocardium [J].
Baxter, GF .
CARDIOVASCULAR RESEARCH, 2002, 55 (03) :483-494
[4]   Middle cerebral artery occlusion in the rat by intraluminal suture - Neurological and pathological evaluation of an improved model [J].
Belayev, L ;
Alonso, OF ;
Busto, R ;
Zhao, WZ ;
Ginsberg, MD .
STROKE, 1996, 27 (09) :1616-1622
[5]   KATP channel openers, adenosine agonists and epileptic preconditioning are stress signals inducing hippocampal neuroprotection [J].
Blondeau, N ;
Plamondon, H ;
Richelme, C ;
Heurteaux, C ;
Lazdunski, M .
NEUROSCIENCE, 2000, 100 (03) :465-474
[6]   Activation of the nuclear factor-κB is a key event in brain tolerance [J].
Blondeau, N ;
Widmann, C ;
Lazdunski, M ;
Heurteaux, C .
JOURNAL OF NEUROSCIENCE, 2001, 21 (13) :4668-4677
[7]   The late phase of preconditioning [J].
Bolli, R .
CIRCULATION RESEARCH, 2000, 87 (11) :972-983
[8]   Nitric oxide is involved in anoxic preconditioning neuroprotection in rat hippocampal slices [J].
Centeno, JM ;
Orti, MA ;
Salom, JB ;
Sick, TJ ;
Pérez-Pinzón, MA .
BRAIN RESEARCH, 1999, 836 (1-2) :62-69
[9]   Stress proteins and tolerance to focal cerebral ischemia [J].
Chen, J ;
Graham, SH ;
Zhu, RL ;
Simon, RP .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 1996, 16 (04) :566-577
[10]   KATP channel-independent targets of diazoxide and 5-hydroxydecanoate in the heart [J].
Hanley, PJ ;
Mickel, M ;
Löffler, M ;
Brandt, U ;
Daut, J .
JOURNAL OF PHYSIOLOGY-LONDON, 2002, 542 (03) :735-741