The erratic mitochondrial clock: variations of mutation rate, not population size, affect mtDNA diversity across birds and mammals

被引:206
作者
Nabholz, Benoit [1 ]
Glemin, Sylvain [1 ]
Galtier, Nicolas [1 ]
机构
[1] Univ Montpellier 2, CNRS, Inst Sci Evolut, UMR 5554, F-34095 Montpellier, France
来源
BMC EVOLUTIONARY BIOLOGY | 2009年 / 9卷
关键词
MOLECULAR CLOCK; GENERATION-TIME; METABOLIC-RATE; DNA EVOLUTION; SUBSTITUTION RATES; GENETIC DIVERSITY; BODY-SIZE; POLYMORPHISM; PHYLOGENY; NUCLEAR;
D O I
10.1186/1471-2148-9-54
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: During the last ten years, major advances have been made in characterizing and understanding the evolution of mitochondrial DNA, the most popular marker of molecular biodiversity. Several important results were recently reported using mammals as model organisms, including (i) the absence of relationship between mitochondrial DNA diversity and life-history or ecological variables, (ii) the absence of prominent adaptive selection, contrary to what was found in invertebrates, and (iii) the unexpectedly large variation in neutral substitution rate among lineages, revealing a possible link with species maximal longevity. We propose to challenge these results thanks to the bird/mammal comparison. Direct estimates of population size are available in birds, and this group presents striking life-history trait differences with mammals (higher mass-specific metabolic rate and longevity). These properties make birds the ideal model to directly test for population size effects, and to discriminate between competing hypotheses about the causes of substitution rate variation. Results: A phylogenetic analysis of cytochrome b third-codon position confirms that the mitochondrial DNA mutation rate is quite variable in birds, passerines being the fastest evolving order. On average, mitochondrial DNA evolves slower in birds than in mammals of similar body size. This result is in agreement with the longevity hypothesis, and contradicts the hypothesis of a metabolic rate-dependent mutation rate. Birds show no footprint of adaptive selection on cytochrome b evolutionary patterns, but no link between direct estimates of population size and cytochrome b diversity. The mutation rate is the best predictor we have of within-species mitochondrial diversity in birds. It partly explains the differences in mitochondrial DNA diversity patterns observed between mammals and birds, previously interpreted as reflecting Hill-Robertson interferences with the W chromosome. Conclusion: Mitochondrial DNA diversity patterns in birds are strongly influenced by the wide, unexpected variation of mutation rate across species. From a fundamental point of view, these results are strongly consistent with a relationship between species maximal longevity and mitochondrial mutation rate, in agreement with the mitochondrial theory of ageing. Form an applied point of view, this study reinforces and extends the message of caution previously expressed for mammals: mitochondrial data tell nothing about species population sizes, and strongly depart the molecular clock assumption.
引用
收藏
页数:13
相关论文
共 82 条
[1]   The incomplete natural history of mitochondria [J].
Ballard, JWO ;
Whitlock, MC .
MOLECULAR ECOLOGY, 2004, 13 (04) :729-744
[2]   Free radicals and aging [J].
Barja, G .
TRENDS IN NEUROSCIENCES, 2004, 27 (10) :595-600
[3]   Phylogeny and diversification of the largest avian radiation [J].
Barker, FK ;
Cibois, A ;
Schikler, P ;
Feinstein, J ;
Cracraft, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (30) :11040-11045
[4]   Population size does not influence mitochondrial genetic diversity in animals [J].
Bazin, E ;
Glémin, S ;
Galtier, N .
SCIENCE, 2006, 312 (5773) :570-572
[5]   Polymorphlix: a sequence polymorphism database [J].
Bazin, E ;
Duret, L ;
Penel, S ;
Galtier, N .
NUCLEIC ACIDS RESEARCH, 2005, 33 :D481-D484
[6]   Low mitochondrial variability in birds may indicate Hill-Robertson effects on the W chromosome [J].
Berlin, S. ;
Tomaras, D. ;
Charlesworth, B. .
HEREDITY, 2007, 99 (04) :389-396
[7]   Evolutionary genetics - Clonal inheritance of avian mitochondrial DNA [J].
Berlin, S ;
Ellegren, H .
NATURE, 2001, 413 (6851) :37-38
[8]   VICARIANCE BIOGEOGRAPHY IN THE PLEISTOCENE AND SPECIATION IN NORTH-AMERICAN WOOD WARBLERS - A TEST OF MENGEL MODEL [J].
BERMINGHAM, E ;
ROHWER, S ;
FREEMAN, S ;
WOOD, C .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (14) :6624-6628
[9]   Determinants of rate variation in mammalian DNA sequence evolution [J].
Bromham, L ;
Rambaut, A ;
Harvey, PH .
JOURNAL OF MOLECULAR EVOLUTION, 1996, 43 (06) :610-621
[10]   RAPID EVOLUTION OF ANIMAL MITOCHONDRIAL-DNA [J].
BROWN, WM ;
GEORGE, M ;
WILSON, AC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1979, 76 (04) :1967-1971