Hybrid insulin cocrystals for controlled release delivery

被引:65
作者
Brader, ML [1 ]
Sukumar, M
Pekar, AH
McClellan, DS
Chance, RE
Flora, DB
Cox, AL
Irwin, L
Myers, SR
机构
[1] Eli Lilly & Co, Lilly Res Labs, Bioprod Pharmaceut Dev, Indianapolis, IN 46285 USA
[2] Eli Lilly & Co, Lilly Res Labs, Phys & Struct Characterizat, Indianapolis, IN 46285 USA
[3] Eli Lilly & Co, Lilly Res Labs, Bio Res Technol & Prot, Indianapolis, IN 46285 USA
[4] Eli Lilly & Co, Lilly Res Labs, Endocrine Res, Indianapolis, IN 46285 USA
关键词
D O I
10.1038/nbt722
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The ability to tailor the release profile of a drug by manipulating its formulation matrix offers important therapeutic advantages. We show here that human insulin can be cocrystallized at preselected ratios with the fully active lipophilically modified insulin derivative octanoyl-N-LysB29-human insulin (C8-HI). The cocrystal is analogous to the NPH (neutral protamine Hagedorn) crystalline complex formed with human insulin, which is commonly used as the long-acting insulin component of diabetes therapy. The in vitro and in vivo release rates of the cocrystal can be controlled by adjusting the relative proportions of the two insulin components. We identified a cocrystal composition comprising 75% C8-HI and 25% human insulin that exhibits near-ideal basal pharmacodynamics in somatostatin-treated beagle dogs. The dependence of release rate on cocrystal ratio provides a robust mechanism for modulating insulin pharmacodynamics. These findings show that a crystalline protein matrix may accommodate a chemical modification that alters the dissolution rate of the crystal in a therapeutically useful way, yet that is structurally innocuous enough to preserve the pharmaceutical integrity of the original microcrystalline entity and the pharmacological activity of the parent molecule.
引用
收藏
页码:800 / 804
页数:5
相关论文
共 38 条
[1]   Crystalline insulin [J].
Abel, JJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1926, 12 :132-136
[2]  
BAKER E N, 1970, Journal of Molecular Biology, V54, P605, DOI 10.1016/0022-2836(70)90131-2
[3]   THE STRUCTURE OF 2ZN PIG INSULIN CRYSTALS AT 1.5-A RESOLUTION [J].
BAKER, EN ;
BLUNDELL, TL ;
CUTFIELD, JF ;
CUTFIELD, SM ;
DODSON, EJ ;
DODSON, GG ;
HODGKIN, DMC ;
HUBBARD, RE ;
ISAACS, NW ;
REYNOLDS, CD ;
SAKABE, K ;
SAKABE, N ;
VIJAYAN, NM .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES B-BIOLOGICAL SCIENCES, 1988, 319 (1195) :369-&
[4]   STRUCTURE OF PORCINE INSULIN COCRYSTALLIZED WITH CLUPEINE-Z [J].
BALSCHMIDT, P ;
HANSEN, FB ;
DODSON, EJ ;
DODSON, GG ;
KORBER, F .
ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE CRYSTAL ENGINEERING AND MATERIALS, 1991, 47 :975-986
[5]  
BANERJEE PS, 1991, PEPTIDE PROTEIN DELI, V4, P487
[6]   Effects of surface hydrophobicity on the structural properties of insulin [J].
Brader, ML ;
Millican, RL ;
Brems, DN ;
Havel, HA ;
Kriauciunas, A ;
Chen, VJ .
TECHNIQUES IN PROTEIN CHEMISTRY VIII, 1997, 8 :289-297
[7]  
Brange J, 1987, GALENICS INSULIN PHY
[8]   ALTERING THE ASSOCIATION PROPERTIES OF INSULIN BY AMINO-ACID REPLACEMENT [J].
BREMS, DN ;
ALTER, LA ;
BECKAGE, MJ ;
CHANCE, RE ;
DIMARCHI, RD ;
GREEN, LK ;
LONG, HB ;
PEKAR, AH ;
SHIELDS, JE ;
FRANK, BH .
PROTEIN ENGINEERING, 1992, 5 (06) :527-533
[9]   Preparation and characterization of a cocrystalline suspension of [LysB28,ProB29] human insulin analogue [J].
DeFelippis, MR ;
Bakaysa, DL ;
Bell, MA ;
Heady, MA ;
Li, S ;
Pye, S ;
Youngman, KM ;
Radziuk, J ;
Frank, BH .
JOURNAL OF PHARMACEUTICAL SCIENCES, 1998, 87 (02) :170-176
[10]  
Defelippis MR, 2000, PHARM FORMULATION DE, P113