Increase in cytosolic Ca2+ levels through the activation of non-selective cation channels induced by oxidative stress causes mitochondrial depolarization leading to apoptosis-like death in Leishmania donovani promastigotes

被引:181
作者
Mukherjee, SB [1 ]
Das, M [1 ]
Sudhandiran, G [1 ]
Shaha, C [1 ]
机构
[1] Natl Inst Immunol, New Delhi 110067, India
关键词
D O I
10.1074/jbc.M201961200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Reactive oxygen species are important regulators of protozoal infection. Promastigotes of Leishmania donovani, the causative agent of Kala-azar, undergo an apoptosis-like death upon exposure to H2O2. The present study shows that upon activation of death response by H2O2, a dose- and time-dependent loss of mitochondrial membrane potential occurs. This loss is accompanied by a depletion of cellular glutathione, but cardiolipin content or thiol oxidation status remains unchanged. ATP levels are reduced within the first 60 min of exposure as a result of mitochondrial membrane potential loss. A tight link exists between changes in cytosolic Ca2+ homeostasis and collapse of the mitochondrial membrane potential, but the dissipation of the potential is independent of elevation of cytosolic Na+ and mitochondrial Ca2+. Partial inhibition of cytosolic Ca2+ increase achieved by chelating extracellular or intracellular Ca2+ by the use of appropriate agents resulted in significant rescue of the fall of the mitochondrial membrane potential and apoptosis-like death. It is further demonstrated that the increase in cytosolic Ca2+ is an additive result of release of Ca2+ from intracellular stores as well as by influx of extracellular Ca2+ through flufenamic acid-sensitive non-selective cation channels; contribution of the latter was larger. Mitochondrial changes do not involve opening of the mitochondrial transition pore as cyclosporin A is unable to prevent mitochondrial membrane potential loss. An antioxidant like N-acetylcysteine is able to inhibit the fall of the mitochondrial membrane potential and prevent apoptosis-like death. Together, these findings show the importance of non-selective cation channels in regulating the response of L. donovani promastigotes to oxidative stress that triggers downstream signaling cascades leading to apotosis-like death.
引用
收藏
页码:24717 / 24727
页数:11
相关论文
共 60 条
[1]   Depletion of glutathione by buthionine sulfoximine is cytotoxic for human neuroblastoma cell lines via apoptosis [J].
Anderson, CP ;
Tsai, JM ;
Meek, WE ;
Liu, RM ;
Tang, YM ;
Forman, HJ ;
Reynolds, CP .
EXPERIMENTAL CELL RESEARCH, 1999, 246 (01) :183-192
[2]   Oxidative damage to mitochondria is a preliminary step to caspase-3 activation in fluoride-induced apoptosis in HL-60 cells [J].
Anuradha, CD ;
Kanno, S ;
Hirano, S .
FREE RADICAL BIOLOGY AND MEDICINE, 2001, 31 (03) :367-373
[3]   Ovothiol and trypanothione as antioxidants in trypanosomatids [J].
Ariyanayagam, MR ;
Fairlamb, AH .
MOLECULAR AND BIOCHEMICAL PARASITOLOGY, 2001, 115 (02) :189-198
[4]   Alterations in membrane fluidity, lipid metabolism, mitochondrial activity, and lipophosphoglycan expression in pentamidine-resistant Leishmania [J].
Robert-Gero M. .
Parasitology Research, 1997, 84 (1) :78-83
[5]   Apoptosis in hematopoietic cells (FL5.12) caused by interleukin-3 withdrawal: relationship to caspase activity and the loss of glutathione [J].
Bojes, HK ;
Feng, X ;
Kehrer, JP ;
Cohen, GM .
CELL DEATH AND DIFFERENTIATION, 1999, 6 (01) :61-70
[6]   Caspase independent/dependent regulation of K+, cell shrinkage, and mitochondrial membrane potential during lymphocyte apoptosis [J].
Bortner, CD ;
Cidlowski, JA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (31) :21953-21962
[7]   A primary role for K+ and Na+ efflux in the activation of apoptosis [J].
Bortner, CD ;
Hughes, FM ;
Cidlowski, JA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (51) :32436-32442
[8]  
CHANG KP, 1983, INT REV CYTOL, P267
[9]   Depolarization of in situ mitochondria by hydrogen peroxide in nerve terminals [J].
Chinopoulos, C ;
Adam-Vizi, V .
OXIDATIVE/ENERGY METABOLISM IN NEURODEGENERATIVE DISORDERS, 1999, 893 :269-272
[10]  
Chinopoulos C, 2000, J NEUROSCI, V20, P2094