Positive periodic solutions of a single species model with feedback regulation and distributed time delay

被引:42
作者
Yin, FQ [1 ]
Li, YK [1 ]
机构
[1] Yunnan Univ, Dept Math, Kunming 650091, Yunnan, Peoples R China
关键词
positive periodic solution; feedback regulation; distributed time delay; topological degree;
D O I
10.1016/S0096-3003(03)00648-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, by using the continuation theorem of coincidence degree theory, a criterion of the existence of positive periodic solutions is obtained for a single species model with feedback regulation and distributed time delay. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:475 / 484
页数:10
相关论文
共 8 条
[1]   Existence and global attractivity of positive periodic solutions of periodic n-species Lotka-Volterra competition systems with several deviating arguments [J].
Fan, M ;
Wang, K ;
Jian, DQ .
MATHEMATICAL BIOSCIENCES, 1999, 160 (01) :47-61
[2]  
Gaines RE, 1977, COINCIDENCE DEGREE N, DOI DOI 10.1007/BFB0089537
[3]  
Gopalsamy K., 1993, Int J Math Math Sci, V16, P177, DOI [DOI 10.1155/S0161171293000213, 10.1155/S0161171293000213]
[4]  
Kuang Y., 1993, DELAY DIFFERENTIAL E
[5]   ON A PERIODIC DELAY POPULATION-MODEL [J].
LALLI, BS ;
ZHANG, BG .
QUARTERLY OF APPLIED MATHEMATICS, 1994, 52 (01) :35-42
[6]  
LI YK, 1997, J BIOMATH, V12, P1
[7]  
WENG PX, 1996, J ACTA MATH APPL SIN, V4, P427
[8]   Global attractivity and oscillation in a nonlinear delay equation [J].
Yan, JR ;
Feng, QX .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 43 (01) :101-108