Roll-to-roll fabrication of monolithic large-area polymer solar cells free from indium-tin-oxide

被引:261
作者
Krebs, Frederik C. [1 ]
机构
[1] Tech Univ Denmark, Riso Natl Lab Sustainable Energy, DK-4000 Roskilde, Denmark
关键词
Monolithic; No pattern; R2R; Coating; ITO free; Inverted device; Large area; Solar panels; Large modules; Air processing; Polymer solar cells; Organic solar cells; Plastic solar cells; Polymer photovoltaics; Organic photovoltaics; Plastic photovoltaics; BAND-GAP POLYMERS; PHOTOVOLTAICS;
D O I
10.1016/j.solmat.2009.04.020
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A roll-to-roll process for polymer solar cells that does not involve indium-tin-oxide (ITO) is presented. A commercially available kapton foil with an overlayer of copper was used as the substrate. Sputtering of titanium metal onto the kapton/copper in an R2R vacuum process gave the monolithic substrate and back electrode for the devices. The active layer was slot-die coated onto the kapton/Cu/Ti foil followed by slot-die coating of a layer of PEDOT:PSS. No patterning of the first four layers was necessary and only the final front electrode required a pattern. The front electrode was applied by screen printing a protective layer in the areas for front electrode contacts and finally a silver grid was applied by screen printing. The topology of the device and the choice of final grid electrode geometry allowed for serial connection of the individual cells into modules. The individual cells were as large as 150 x 150 mm. The geometric fill factors were as high as 74% and thus much higher than is readily achieved using serially connected cells on the same Substrate. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1636 / 1641
页数:6
相关论文
共 20 条
[1]   Printable anodes for flexible organic solar cell modules [J].
Aernouts, T ;
Vanlaeke, P ;
Geens, W ;
Poortmans, J ;
Heremans, P ;
Borghs, S ;
Mertens, R ;
Andriessen, R ;
Leenders, L .
THIN SOLID FILMS, 2004, 451 :22-25
[2]   Polythiophene by solution processing [J].
Bjerring, Morten ;
Nielsen, Julie Sogaard ;
Nielsen, Niels Chr. ;
Krebs, Frederik C. .
MACROMOLECULES, 2007, 40 (16) :6012-6013
[3]   Low band gap polymers for organic photovoltaics [J].
Bundgaard, Eva ;
Krebs, Frederik C. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2007, 91 (11) :954-985
[4]   Bulk heterojunctions based on native polythiophene [J].
Gevorgyan, Suren A. ;
Krebs, Frederik C. .
CHEMISTRY OF MATERIALS, 2008, 20 (13) :4386-4390
[5]   Hybrid solar cells [J].
Guenes, Serap ;
Sariciftci, Niyazi Serdar .
INORGANICA CHIMICA ACTA, 2008, 361 (03) :581-588
[6]   Conjugated polymer-based organic solar cells [J].
Guenes, Serap ;
Neugebauer, Helmut ;
Sariciftci, Niyazi Serdar .
CHEMICAL REVIEWS, 2007, 107 (04) :1324-1338
[7]   All solution processed tandem polymer solar cells based on thermocleavable materials [J].
Hagemann, Ole ;
Bjerring, Morten ;
Nielsen, Niels Chr. ;
Krebs, Frederik C. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2008, 92 (11) :1327-1335
[8]   Stability/degradation of polymer solar cells [J].
Jorgensen, Mikkel ;
Norrman, Kion ;
Krebs, Frederik C. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2008, 92 (07) :686-714
[9]   Air stable polymer photovoltaics based on a process free from vacuum steps and fullerenes [J].
Krebs, Frederik C. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2008, 92 (07) :715-726
[10]   A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies [J].
Krebs, Frederik C. ;
Gevorgyan, Suren A. ;
Alstrup, Jan .
JOURNAL OF MATERIALS CHEMISTRY, 2009, 19 (30) :5442-5451