A SILAC-based DNA protein interaction screen that identifies candidate binding proteins to functional DNA elements

被引:119
作者
Mittler, Gerhard [2 ,3 ]
Butter, Falk [1 ]
Mann, Matthias [1 ]
机构
[1] Max Planck Inst Biochem, Dept Proteom & Signal Transduct, D-82152 Martinsried, Germany
[2] Univ So Denmark, Ctr Expt Bioinformat, DK-5230 Odense M, Denmark
[3] Univ Freiburg, BIOSS Ctr Biol Signalling Studies, D-79104 Freiburg, Germany
基金
新加坡国家研究基金会;
关键词
RNA-POLYMERASE-II; METHYL-CPG; GENE-EXPRESSION; MASS-SPECTROMETRY; QUANTITATIVE-ANALYSIS; DEPENDENT REPRESSION; CELL-CULTURE; AMINO-ACIDS; PUR-ALPHA; TRANSCRIPTION;
D O I
10.1101/gr.081711.108
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Determining the underlying logic that governs the networks of gene expression in higher eukaryotes is an important task in the post-genome era. Sequence-specific transcription factors (TFs) that can read the genetic regulatory information and proteins that interpret the information provided by CpG methylation are crucial components of the system that controls the transcription of protein-coding genes by RNA polymerase II. We have previously described Stable Isotope Labeling by Amino acids in Cell culture (SILAC) for the quantitative comparison of proteomes and the determination of protein protein interactions. Here, we report a generic and scalable strategy to uncover such DNA protein interactions by SILAC that uses a fast and simple one-step affinity capture of TFs from crude nuclear extracts. Employing mutated or non-methylated control oligonucleotides, specific TFs binding to their wild-type or methyl-CpG bait are distinguished from the vast excess of copurifying background proteins by their peptide isotope ratios that are determined by mass spectrometry. Our proof of principle screen identifies several proteins that have not been previously reported to be present on the fully methylated CpG island upstream of the human metastasis associated 1 family, member 2 gene promoter. The approach is robust, sensitive, and specific and offers the potential for high-throughput determination of TF binding profiles.
引用
收藏
页码:284 / 293
页数:10
相关论文
共 70 条
[1]   Methyl-CpG binding proteins identify novel sites of epigenetic inactivation in human cancer [J].
Ballestar, E ;
Paz, MF ;
Valle, L ;
Wei, S ;
Fraga, MF ;
Espada, J ;
Cigudosa, JC ;
Huang, THM ;
Esteller, M .
EMBO JOURNAL, 2003, 22 (23) :6335-6345
[2]   Ultraconserved elements in the human genome [J].
Bejerano, G ;
Pheasant, M ;
Makunin, I ;
Stephen, S ;
Kent, WJ ;
Mattick, JS ;
Haussler, D .
SCIENCE, 2004, 304 (5675) :1321-1325
[3]   SEQUENCE OF CDNA COMPRISING THE HUMAN PUR GENE AND SEQUENCE-SPECIFIC SINGLE-STRANDED-DNA-BINDING PROPERTIES OF THE ENCODED PROTEIN [J].
BERGEMANN, AD ;
MA, ZW ;
JOHNSON, EM .
MOLECULAR AND CELLULAR BIOLOGY, 1992, 12 (12) :5673-5682
[4]   UHRF1 plays a role in maintaining DNA methylation in mammalian cells [J].
Bostick, Magnolia ;
Kim, Jong Kyong ;
Esteve, Pierre-Olivier ;
Clark, Amander ;
Pradhan, Sriharsa ;
Jacobsen, Steven E. .
SCIENCE, 2007, 317 (5845) :1760-1764
[5]   DNA METHYLATION INHIBITS TRANSCRIPTION INDIRECTLY VIA A METHYL-CPG BINDING-PROTEIN [J].
BOYES, J ;
BIRD, A .
CELL, 1991, 64 (06) :1123-1134
[6]  
Bulyk ML, 2004, GENOME BIOL, V5
[7]   Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs [J].
Cawley, S ;
Bekiranov, S ;
Ng, HH ;
Kapranov, P ;
Sekinger, EA ;
Kampa, D ;
Piccolboni, A ;
Sementchenko, V ;
Cheng, J ;
Williams, AJ ;
Wheeler, R ;
Wong, B ;
Drenkow, J ;
Yamanaka, M ;
Patel, S ;
Brubaker, S ;
Tammana, H ;
Helt, G ;
Struhl, K ;
Gingeras, TR .
CELL, 2004, 116 (04) :499-509
[8]   Is proteomics the new genomics? [J].
Cox, Juergen ;
Mann, Matthias .
CELL, 2007, 130 (03) :395-398
[9]   MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification [J].
Cox, Juergen ;
Mann, Matthias .
NATURE BIOTECHNOLOGY, 2008, 26 (12) :1367-1372
[10]   The biological impact of mass-spectrometry-based proteomics [J].
Cravatt, Benjamin F. ;
Simon, Gabriel M. ;
Yates, John R., III .
NATURE, 2007, 450 (7172) :991-1000