Neurotrophin-3 gradients established by lentiviral gene delivery promote short-distance axonal bridging beyond cellular grafts in the injured spinal cord

被引:139
作者
Taylor, Laura
Jones, Leonard
Tuszynski, Mark H.
Blesch, Armin
机构
[1] Univ Calif San Diego, Dept Neurosci, La Jolla, CA 92093 USA
[2] Vet Adm Med Ctr, San Diego, CA 92165 USA
关键词
NT-3; spinal cord injury; ascending sensory; gene therapy; lentivirus; regeneration;
D O I
10.1523/JNEUROSCI.0734-06.2006
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Neurotrophic factor delivery to sites of spinal cord injury (SCI) promotes axon growth into but not beyond lesion sites. We tested the hypothesis that sustained growth factor gradients beyond regions of SCI will promote significant axonal bridging into and beyond lesions. Adult rats underwent C3 lesions to transect ascending dorsal column sensory axons, and autologous bone marrow stromal cells were grafted into the lesion to provide a cellular bridge for growth into the injured region. Concurrently, lentiviral vectors expressing neurotrophin-3 (NT-3) or green fluorescent protein (GFP) ( controls) were injected into the host cord rostral to the lesion to promote axon extension beyond the graft/lesion. Four weeks later, NT-3 gradients beyond the lesion were detectable by ELISA in animals that received NT-3-expressing lentiviral vectors, with highest average NT-3 levels located near the rostral vector injection site. Significantly more ascending sensory axons extended into tissue rostral to the lesion site in animals injected with NT-3 vectors compared with GFP vectors, but only if the zone of NT-3 vector transduction extended continuously from the injection site to the graft; any "gap" in NT-3 expression from the graft to rostral tissue resulted in axon bridging failure. Despite axon bridging beyond the lesion, regenerating axons did not continue to grow over very long distances, even in the presence of a continuing growth factor gradient beyond the lesion. These findings indicate that a localized and continuous gradient of NT-3 can achieve axonal bridging beyond the glial scar, but growth for longer distances is not sustainable simply with a trophic stimulus.
引用
收藏
页码:9713 / 9721
页数:9
相关论文
共 64 条
[1]   Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats - similarities to astrocyte grafts [J].
Azizi, SA ;
Stokes, D ;
Augelli, BJ ;
DiGirolamo, C ;
Prockop, DJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (07) :3908-3913
[2]   Characterization of lentiviral vector-mediated gene transfer in adult mouse brain [J].
Baekelandt, V ;
Claeys, A ;
Eggermont, K ;
Lauwers, E ;
De Strooper, B ;
Nuttin, B ;
Debyser, Z .
HUMAN GENE THERAPY, 2002, 13 (07) :841-853
[3]   Neurotrophins BDNF and NT-3 promote axonal re-entry into the distal host spinal cord through Schwann cell-seeded mini-channels [J].
Bamber, NI ;
Li, HY ;
Lu, XB ;
Oudega, M ;
Aebischer, P ;
Xu, XM .
EUROPEAN JOURNAL OF NEUROSCIENCE, 2001, 13 (02) :257-268
[4]   Axonal responses to cellularly delivered NT=4/5 after spinal cord injury [J].
Blesch, A ;
Yang, H ;
Weidner, N ;
Hoang, A ;
Otero, D .
MOLECULAR AND CELLULAR NEUROSCIENCE, 2004, 27 (02) :190-201
[5]   Lentiviral and MLV based retroviral vectors for ex vivo and in vivo gene transfer [J].
Blesch, A .
METHODS, 2004, 33 (02) :164-172
[6]   Intercostal nerve implants transduced with an adenoviral vector encoding neurotrophin-3 promote regrowth of injured rat corticospinal tract fibers and improve hindlimb function [J].
Blits, P ;
Dijkhuizen, PA ;
Boer, GJ ;
Verhaagen, J .
EXPERIMENTAL NEUROLOGY, 2000, 164 (01) :25-37
[7]   NT-3 promotes growth of lesioned adult rat sensory axons ascending in the dorsal columns of the spinal cord [J].
Bradbury, EJ ;
Khemani, S ;
King, VR ;
Priestley, JV ;
McMahon, SB .
EUROPEAN JOURNAL OF NEUROSCIENCE, 1999, 11 (11) :3873-3883
[8]   Leukemia inhibitory factor determines the growth status of injured adult sensory neurons [J].
Cafferty, WBJ ;
Gardiner, NJ ;
Gavazzi, I ;
Powell, J ;
McMahon, SB ;
Heath, JK ;
Munson, J ;
Cohen, J ;
Thompson, SWN .
JOURNAL OF NEUROSCIENCE, 2001, 21 (18) :7161-7170
[9]   Development and specification of muscle sensory neurons [J].
Chen, HH ;
Frank, E .
CURRENT OPINION IN NEUROBIOLOGY, 1999, 9 (04) :405-409
[10]   Axonal regeneration and functional recovery after complete spinal cord transection in rats by delayed treatment with transplants and neurotrophins [J].
Coumans, JV ;
Lin, TTS ;
Dai, HN ;
MacArthur, L ;
McAtee, M ;
Nash, C ;
Bregman, BS .
JOURNAL OF NEUROSCIENCE, 2001, 21 (23) :9334-9344