Debundling of single-walled nanotubes by dilution: Observation of large populations of individual nanotubes in amide solvent dispersions

被引:301
作者
Giordani, Silvia
Bergin, Shane D.
Nicolosi, Valeria
Lebedkin, Sergei
Kappes, Manfred M.
Blau, Werner J.
Coleman, Jonathan N. [1 ]
机构
[1] Univ Dublin Trinity Coll, Sch Phys, Dublin 2, Ireland
[2] Forschungszentrum Karlsruhe, Inst Nanotechnol, D-76021 Karlsruhe, Germany
[3] Univ Karlsruhe, Inst Phys Chem, D-76128 Karlsruhe, Germany
[4] Univ Dublin Trinity Coll, Ctr Res Adapt Nanostruct & Nanodevices, Dublin 2, Ireland
关键词
D O I
10.1021/jp0626216
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Large-scale debundling of single-walled nanotubes has been demonstrated by dilution of nanotube dispersions in the solvent N-methyl-2-pyrrolidone (NMP). At high concentrations some very large ( similar to 100s of micrometers) nanotube aggregates exist that can be removed by mild centrifugation. By measurement of the absorbance before and after centrifugation as a function of concentration the relative aggregate and dispersed nanotube concentrations can be monitored. No aggregates are observed below C-NT approximate to 0.02 mg/mL, suggesting that this can be considered the nanotube dispersion limit in NMP. After centrifugation, the dispersions are stable against sedimentation and further aggregation for a period of weeks at least. Atomic force microscopy (AFM) studies on deposited films reveal that the bundle diameter distribution decreases dramatically as concentration is decreased. Detailed data analysis suggests the presence of an equilibrium bundle number density and that the dispersions self-arrange themselves to always remain close to the dilute/semidilute boundary. A population of individual nanotubes is always observed that increases with decreasing concentration until almost 70% of all dispersed objects are individual nanotubes at a concentration of 0.004 mg/mL. The number density of individual nanotubes peaks at a concentration of similar to 10(-2) mg/mL. Both the mass fraction and the partial concentration of individual nanotubes can also be measured and behave in similar fashion. Comparison of the number density and partial concentration also of individual nanotubes reveals that the individual nanotubes have average molar masses of similar to 700 000 g/mol. The presence of individual nanotubes in NMP dispersion was confirmed by photoluminescence spectroscopy. Concentration dependence of the photoluminescence intensity confirms that the AFM measurements reflect the diameter distributions in situ. In addition, Raman spectroscopy confirms the presence of large quantities of individual nanotubes in the deposited films. Finally, the nature of the solvent properties required for dispersion are discussed.
引用
收藏
页码:15708 / 15718
页数:11
相关论文
共 38 条
[1]   Organic solvent dispersions of single-walled carbon nanotubes: Toward solutions of pristine nanotubes [J].
Ausman, KD ;
Piner, R ;
Lourie, O ;
Ruoff, RS ;
Korobov, M .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (38) :8911-8915
[2]   Structure-assigned optical spectra of single-walled carbon nanotubes [J].
Bachilo, SM ;
Strano, MS ;
Kittrell, C ;
Hauge, RH ;
Smalley, RE ;
Weisman, RB .
SCIENCE, 2002, 298 (5602) :2361-2366
[3]   Dissolution of small diameter single-wall carbon nanotubes in organic solvents? [J].
Bahr, JL ;
Mickelson, ET ;
Bronikowski, MJ ;
Smalley, RE ;
Tour, JM .
CHEMICAL COMMUNICATIONS, 2001, (02) :193-194
[4]   Carbon nanotubes - the route toward applications [J].
Baughman, RH ;
Zakhidov, AA ;
de Heer, WA .
SCIENCE, 2002, 297 (5582) :787-792
[5]   A generic organometallic approach toward ultra-strong carbon nanotube polymer composites [J].
Blake, R ;
Gun'ko, YK ;
Coleman, J ;
Cadek, M ;
Fonseca, A ;
Nagy, JB ;
Blau, WJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (33) :10226-10227
[6]   Binding kinetics and SWNT bundle dissociation in low concentration polymer-nanotube dispersions [J].
Coleman, JN ;
Fleming, A ;
Maier, S ;
O'Flaherty, S ;
Minett, AI ;
Ferreira, MS ;
Hutzler, S ;
Blau, WJ .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (11) :3446-3450
[7]   Geometric constraints in the growth of nanotube-templated polymer monolayers [J].
Coleman, JN ;
Ferreira, MS .
APPLIED PHYSICS LETTERS, 2004, 84 (05) :798-800
[8]   Improving the mechanical properties of single-walled carbon nanotube sheets by intercalation of polymeric adhesives [J].
Coleman, JN ;
Blau, WJ ;
Dalton, AB ;
Muñoz, E ;
Collins, S ;
Kim, BG ;
Razal, J ;
Selvidge, M ;
Vieiro, G ;
Baughman, RH .
APPLIED PHYSICS LETTERS, 2003, 82 (11) :1682-1684
[9]   Mechanical reinforcement of polymers using carbon nanotubes [J].
Coleman, JN ;
Khan, U ;
Gun'ko, YK .
ADVANCED MATERIALS, 2006, 18 (06) :689-706
[10]   Selective interaction of a semiconjugated organic polymer with single-wall nanotubes [J].
Dalton, AB ;
Stephan, C ;
Coleman, JN ;
McCarthy, B ;
Ajayan, PM ;
Lefrant, S ;
Bernier, P ;
Blau, WJ ;
Byrne, HJ .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (43) :10012-10016