Computational reconstruction of transcriptional regulatory modules of the yeast cell cycle

被引:53
作者
Wu, Wei-Sheng [1 ]
Li, Wen-Hsiung
Chen, Bor-Sen
机构
[1] Natl Tsing Hua Univ, Lab Control & Syst Biol, Dept Elect Engn, Hsinchu 300, Taiwan
[2] Univ Chicago, Dept Ecol & Evolut, Chicago, IL 60637 USA
[3] Acad Sinica, Genom Res Ctr, Taipei 115, Taiwan
关键词
D O I
10.1186/1471-2105-7-421
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: A transcriptional regulatory module (TRM) is a set of genes that is regulated by a common set of transcription factors (TFs). By organizing the genome into TRMs, a living cell can coordinate the activities of many genes and carry out complex functions. Therefore, identifying TRMs is helpful for understanding gene regulation. Results: Integrating gene expression and ChIP-chip data, we develop a method, called MOdule Finding Algorithm (MOFA), for reconstructing TRMs of the yeast cell cycle. MOFA identified 87 TRMs, which together contain 336 distinct genes regulated by 40 TFs. Using various kinds of data, we validated the biological relevance of the identified TRMs. Our analysis shows that different combinations of a fairly small number of TFs are responsible for regulating a large number of genes involved in different cell cycle phases and that there may exist crosstalk between the cell cycle and other cellular processes. MOFA is capable of finding many novel TF-target gene relationships and can determine whether a TF is an activator or/ and a repressor. Finally, MOFA refines some clusters proposed by previous studies and provides a better understanding of how the complex expression program of the cell cycle is regulated. Conclusion: MOFA was developed to reconstruct TRMs of the yeast cell cycle. Many of these TRMs are in agreement with previous studies. Further, MOFA inferred many interesting modules and novel TF combinations. We believe that computational analysis of multiple types of data will be a powerful approach to studying complex biological systems when more and more genomic resources such as genome-wide protein activity data and protein-protein interaction data become available.
引用
收藏
页数:15
相关论文
共 73 条
[1]   Swi5 controls a novel wave of cyclin synthesis in late mitosis [J].
Aerne, BL ;
Johnson, AL ;
Toyn, JH ;
Johnston, LH .
MOLECULAR BIOLOGY OF THE CELL, 1998, 9 (04) :945-956
[2]   A test case of correlation metric construction of a reaction pathway from measurements [J].
Arkin, A ;
Shen, PD ;
Ross, J .
SCIENCE, 1997, 277 (5330) :1275-1279
[3]   Identifying cooperativity among transcription factors controlling the cell cycle in yeast [J].
Banerjee, N ;
Zhang, MQ .
NUCLEIC ACIDS RESEARCH, 2003, 31 (23) :7024-7031
[4]   Computational discovery of gene modules and regulatory networks [J].
Bar-Joseph, Z ;
Gerber, GK ;
Lee, TI ;
Rinaldi, NJ ;
Yoo, JY ;
Robert, F ;
Gordon, DB ;
Fraenkel, E ;
Jaakkola, TS ;
Young, RA ;
Gifford, DK .
NATURE BIOTECHNOLOGY, 2003, 21 (11) :1337-1342
[5]   Nim1-related kinases coordinate cell cycle progression with the organization of the peripheral cytoskeleton in yeast [J].
Barral, Y ;
Parra, M ;
Bidlingmaier, S ;
Snyder, M .
GENES & DEVELOPMENT, 1999, 13 (02) :176-187
[6]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[7]   cis element/transcription factor analysis (cis/TF):: A method for discovering transcription factor/cis element relationships [J].
Birnbaum, K ;
Benfey, PN ;
Shasha, DE .
GENOME RESEARCH, 2001, 11 (09) :1567-1573
[8]   Regulatory element detection using correlation with expression [J].
Bussemaker, HJ ;
Li, H ;
Siggia, ED .
NATURE GENETICS, 2001, 27 (02) :167-171
[9]  
CARMEN AA, 1994, J BIOL CHEM, V269, P9790
[10]   Remodeling of yeast genome expression in response to environmental changes [J].
Causton, HC ;
Ren, B ;
Koh, SS ;
Harbison, CT ;
Kanin, E ;
Jennings, EG ;
Lee, TI ;
True, HL ;
Lander, ES ;
Young, RA .
MOLECULAR BIOLOGY OF THE CELL, 2001, 12 (02) :323-337