Synergistic enhancement of bone formation and healing by stem cell-expressed VEGF and bone morphogenetic protein-4

被引:574
作者
Peng, HR
Wright, V
Usas, A
Gearhart, B
Shen, HC
Cummins, J
Huard, J
机构
[1] Univ Pittsburgh, Dept Orthoped Surg, Childrens Hosp Pittsburgh, Growth & Dev Lab, Pittsburgh, PA 15213 USA
[2] Univ Pittsburgh, Dept Mol Genet & Biochem, Pittsburgh, PA 15213 USA
[3] Univ Pittsburgh, Dept Orthopaed Surg, Med Ctr, Pittsburgh, PA 15213 USA
[4] Triserv Gen Hosp, Dept Orthopaed Surg, Taipei, Taiwan
关键词
D O I
10.1172/JCI200215153
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
We investigated the interaction between angiogenic and osteogenic factors in bone formation and bone healing with ex vivo gene therapy using muscle-derived stem cells genetically engineered to express human bone morphogenetic protein-4 (BMP4), VEGF, or VEGF-specific antagonist (soluble Flt1). Our results show that although VEGF alone did not improve bone regeneration, it acted synergistically with BMP4 to increase recruitment of mesenchymal stem cells, to enhance cell survival, and to augment cartilage formation in the early stages of endochondral bone formation. These early effects, coupled with accelerated cartilage resorption, eventually led to a significant enhancement of bone formation and bone healing. The beneficial effect of VEGF on bone healing elicited by BMP4 depends critically on the ratio of VEGF to BMP4, with an improper ratio leading to detrimental effects on bone healing. Finally, we show that soluble Flt1 inhibits bone formation elicited by BMP4. Thus, VEGF plays an important role in bone formation elicited by BMP4, and it can significantly enhance BMP4-elicited bone formation and regeneration through multiple mechanisms. This study has important implications for the formulation of new strategies to improve bone healing through increasing mesenchymal stem cell recruitment and survival, in combination with muscle-derived stem cell-based gene therapy.
引用
收藏
页码:751 / 759
页数:9
相关论文
共 31 条
[1]   In vivo endochondral bone formation using a bone morphogenetic protein 2 adenoviral vector [J].
Alden, TD ;
Pittman, DD ;
Hankins, GR ;
Beres, EJ ;
Engh, JA ;
Das, S ;
Hudson, SB ;
Kerns, KM ;
Kallmes, DF ;
Helm, GA .
HUMAN GENE THERAPY, 1999, 10 (13) :2245-2253
[2]   Developmental control of blood cell migration by the Drosophila VEGF pathway [J].
Cho, NK ;
Keyes, L ;
Johnson, E ;
Heller, J ;
Ryner, L ;
Karim, F ;
Krasnow, MA .
CELL, 2002, 108 (06) :865-876
[3]   Expression of vascular endothelial growth factors and their receptors during osteoblast differentiation [J].
Deckers, MML ;
Karperien, M ;
van der Bent, C ;
Yamashita, T ;
Papapoulos, SE ;
Löwik, CWGM .
ENDOCRINOLOGY, 2000, 141 (05) :1667-1674
[4]   VEGF165 promotes survival of leukemic cells by Hsp90-mediated induction of Bcl-2 expression and apoptosis inhibition [J].
Dias, S ;
Shmelkov, SV ;
Lam, G ;
Rafii, S .
BLOOD, 2002, 99 (07) :2532-2540
[5]   Stimulation of new bone formation by direct transfer of osteogenic plasmid genes [J].
Fang, JM ;
Zhu, YY ;
Smiley, E ;
Bonadio, J ;
Rouleau, JP ;
Goldstein, SA ;
McCauley, LK ;
Davidson, BL ;
Roessler, BJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (12) :5753-5758
[6]  
Gazit D, 1999, J GENE MED, V1, P121, DOI 10.1002/(SICI)1521-2254(199903/04)1:2<121::AID-JGM26>3.0.CO
[7]  
2-J
[8]   VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation [J].
Gerber, HP ;
Vu, TH ;
Ryan, AM ;
Kowalski, J ;
Werb, Z ;
Ferrara, N .
NATURE MEDICINE, 1999, 5 (06) :623-628
[9]   INDUCTION OF VASCULAR ENDOTHELIAL GROWTH-FACTOR EXPRESSION BY PROSTAGLANDIN E(2) AND E(1) IN OSTEOBLASTS [J].
HARADA, S ;
NAGY, JA ;
SULLIVAN, KA ;
THOMAS, KA ;
ENDO, N ;
RODAN, GA ;
RODAN, SB .
JOURNAL OF CLINICAL INVESTIGATION, 1994, 93 (06) :2490-2496