Similarities and differences in the thioredoxin superfamily

被引:104
作者
Carvalho, Alexandra P. [1 ]
Fernandes, Pedro A. [1 ]
Ramos, Maria J. [1 ]
机构
[1] Univ Porto, Fac Ciencias, Dept Quim, P-4169007 Oporto, Portugal
关键词
thioredoxin; PDI; DsbA; cysteine; pk(a);
D O I
10.1016/j.pbiomolbio.2005.06.012
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
There is growing interest in the proteins involved in protein folding. This is mainly due to the large number of human diseases related to defects in folding, which include cystic fibrosis, Alzheimer's and cancer. However, equally important as the oxidation and concomitant formation of disulfide bridges of the extracellular or secretory proteins is the reduction and maintenance in the reduced state of the proteins within the cell. Interestingly, the proteins that are responsible for maintenance of the reduced state belong to the same superfamily as those responsible for the formation of disulfide bridges: all are members of the thioredoxin superfamily. In this article, we highlight the main features of those thioredoxin-like proteins directly involved in the redox reactions. We describe their biological functions, cytoplasmic location, mechanisms of action, structures and active site features, and discuss the principal hypotheses concerning origins of the different reduction potentials and unusual pK(a)'s of the catalytic residues. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:229 / 248
页数:20
相关论文
共 133 条
  • [1] A new Escherichia coli gene, dsbG, encodes a periplasmic protein involved in disulphide bond formation, required for recycling DsbA/DsbB and DsbC redox proteins
    Andersen, CL
    MattheyDupraz, A
    Missiakas, D
    Raina, S
    [J]. MOLECULAR MICROBIOLOGY, 1997, 26 (01) : 121 - 132
  • [2] Anfinsen C B, 1975, Adv Protein Chem, V29, P205, DOI 10.1016/S0065-3233(08)60413-1
  • [3] Physiological functions of thioredoxin and thioredoxin reductase
    Arnér, ESJ
    Holmgren, A
    [J]. EUROPEAN JOURNAL OF BIOCHEMISTRY, 2000, 267 (20): : 6102 - 6109
  • [4] Åslund F, 1999, J BACTERIOL, V181, P1375
  • [5] Redox potentials of glutaredoxins and other thiol-disulfide oxidoreductases of the thioredoxin superfamily determined by direct protein-protein redox equilibria
    Åslund, F
    Berndt, KD
    Holmgren, A
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (49) : 30780 - 30786
  • [6] 2 ADDITIONAL GLUTAREDOXINS EXIST IN ESCHERICHIA-COLI - GLUTAREDOXIN-3 IS A HYDROGEN DONOR FOR RIBONUCLEOTIDE REDUCTASE IN A THIOREDOXIN GLUTAREDOXIN-1 DOUBLE MUTANT
    ASLUND, F
    EHN, B
    MIRANDAVIZUETE, A
    PUEYO, C
    HOLMGREN, A
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (21) : 9813 - 9817
  • [7] Reconstitution of a protein disulfide catalytic system
    Bader, M
    Muse, W
    Zander, T
    Bardwell, J
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (17) : 10302 - 10307
  • [8] Oxidative protein folding is driven by the electron transport system
    Bader, M
    Muse, W
    Ballou, DP
    Gassner, C
    Bardwell, JCA
    [J]. CELL, 1999, 98 (02) : 217 - 227
  • [9] Disulfide bonds are generated by quinone reduction
    Bader, MW
    Xie, T
    Yu, CA
    Bardwell, JCA
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (34) : 26082 - 26088
  • [10] In vivo and in vitro function of the Escherichia coli periplasmic cysteine oxidoreductase DsbG
    Bessette, PH
    Cotto, JJ
    Gilbert, HF
    Georgiou, G
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (12) : 7784 - 7792