hp-Version discontinuous Galerkin methods for hyperbolic conservation laws

被引:101
作者
Bey, KS
Oden, JT
机构
[1] UNIV TEXAS,TEXAS INST COMPUTAT & APPL MATH,AUSTIN,TX 78712
[2] NASA,LANGLEY RES CTR,HAMPTON,VA 23681
关键词
D O I
10.1016/0045-7825(95)00944-2
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The development of hp-version discontinuous Galerkin methods for hyperbolic conservation laws is presented in this work. A priori error estimates are derived for a model class of linear hyperbolic conservation laws. These estimates are obtained using a new mesh-dependent norm that reflects the dependence of the approximate solution on the local element size and the local order of approximation. The results generalize and extend previous results on mesh-dependent norms to hp-version discontinuous Galerkin methods. A posteriori error estimates which provide bounds on the actual error are also developed in this work. Numerical experiments verify the a priori estimates and demonstrate the effectiveness of the a posteriori estimates in providing reliable estimates of the actual error in the numerical solution.
引用
收藏
页码:259 / 286
页数:28
相关论文
共 20 条
[1]   A PROCEDURE FOR A POSTERIORI ERROR ESTIMATION FOR H-P FINITE-ELEMENT METHODS [J].
AINSWORTH, M ;
ODEN, JT .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1992, 101 (1-3) :73-96
[2]   A UNIFIED APPROACH TO A POSTERIORI ERROR ESTIMATION USING ELEMENT RESIDUAL METHODS [J].
AINSWORTH, M ;
ODEN, JT .
NUMERISCHE MATHEMATIK, 1993, 65 (01) :23-50
[3]  
[Anonymous], 1986, ACCURACY ESTIMATES A
[4]  
BABUSKA I, 1987, RAIRO-MATH MODEL NUM, V21, P199
[5]  
BANK RE, 1985, MATH COMPUT, V44, P283, DOI 10.1090/S0025-5718-1985-0777265-X
[6]  
Bey K. S., 1994, THESIS U TEXAS AUSTI
[7]  
BISWAS R, 1993, 935 RENSS POL I DEP
[8]  
Ciarlet PG., 1978, The Finite Element Method for Elliptic Problems
[9]   TVB RUNGE-KUTTA LOCAL PROJECTION DISCONTINUOUS GALERKIN FINITE-ELEMENT METHOD FOR CONSERVATION-LAWS .2. GENERAL FRAMEWORK [J].
COCKBURN, B ;
SHU, CW .
MATHEMATICS OF COMPUTATION, 1989, 52 (186) :411-435
[10]   THE RUNGE-KUTTA LOCAL PROJECTION DISCONTINUOUS GALERKIN FINITE-ELEMENT METHOD FOR CONSERVATION-LAWS .4. THE MULTIDIMENSIONAL CASE [J].
COCKBURN, B ;
HOU, SC ;
SHU, CW .
MATHEMATICS OF COMPUTATION, 1990, 54 (190) :545-581