Predicting capacity of hard carbon anodes in sodium-ion batteries using porosity measurements

被引:303
作者
Bommier, Clement [1 ]
Luo, Wei [1 ]
Gao, Wen-Yang [3 ]
Greaney, Alex [2 ]
Ma, Shengqian [3 ]
Ji, Xiulei [1 ]
机构
[1] Oregon State Univ, Dept Chem, Corvallis, OR 97331 USA
[2] Oregon State Univ, Dept Mech Ind & Mat Engn, Corvallis, OR 97331 USA
[3] Univ S Florida, Dept Chem, Tampa, FL 33620 USA
基金
美国国家科学基金会;
关键词
LOW-COST; ENERGY-STORAGE; GRAPHITE SYSTEM; RATE CAPABILITY; NA; PERFORMANCE; INSERTION; ELECTRODE; LITHIUM; TIN;
D O I
10.1016/j.carbon.2014.04.064
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report an inverse relationship between measurable porosity values and reversible capacity from sucrose-derived hard carbon as an anode for sodium-ion batteries (SIBs). Materials with low measureable pore volumes and surface areas obtained through N-2 sorption yield higher reversible capacities. Conversely, increasing measurable porosity and specific surface area leads to sharp decreases in reversible capacity. Utilizing a low porosity material, we thus are able to obtain a reversible capacity of 335 mAh g(-1). These findings suggest that sodium-ion storage is highly dependent on the absence of pores detectable through N-2 sorption in sucrose-derived carbon. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:165 / 174
页数:10
相关论文
共 43 条
[1]   Carbon microspheres obtained from resorcinol-formaldehyde as high-capacity electrodes for sodium-ion batteries [J].
Alcántara, R ;
Lavela, P ;
Ortiz, GF ;
Tirado, JL .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2005, 8 (04) :A222-A225
[2]   Carbon black:: a promising electrode material for sodium-ion batteries [J].
Alcántara, R ;
Jiménez-Mateos, JM ;
Lavela, P ;
Tirado, JL .
ELECTROCHEMISTRY COMMUNICATIONS, 2001, 3 (11) :639-642
[3]  
Alcantra R, 2002, CHEM MATER, V14, P287
[4]   SODIUM GRAPHITE SYSTEM AT HIGH-PRESSURES [J].
AVDEEV, VV ;
NALIMOVA, VA ;
SEMENENKO, KN .
SYNTHETIC METALS, 1990, 38 (03) :363-369
[5]   Self-organized amorphous TiO2 nanotube arrays on porous Ti foam for rechargeable lithium and sodium ion batteries [J].
Bi, Zhonghe ;
Paranthaman, M. Parans ;
Menchhofer, Paul A. ;
Dehoff, Ryan R. ;
Bridges, Craig A. ;
Chi, Miaofang ;
Guo, Bingkun ;
Sun, Xiao-Guang ;
Dai, Sheng .
JOURNAL OF POWER SOURCES, 2013, 222 :461-466
[6]   Sodium Ion Insertion in Hollow Carbon Nanowires for Battery Applications [J].
Cao, Yuliang ;
Xiao, Lifen ;
Sushko, Maria L. ;
Wang, Wei ;
Schwenzer, Birgit ;
Xiao, Jie ;
Nie, Zimin ;
Saraf, Laxmikant V. ;
Yang, Zhengguo ;
Liu, Jun .
NANO LETTERS, 2012, 12 (07) :3783-3787
[7]   Better Cycling Performances of Bulk Sb in Na-Ion Batteries Compared to Li-Ion Systems: An Unexpected Electrochemical Mechanism [J].
Darwiche, Ali ;
Marino, Cyril ;
Sougrati, Moulay T. ;
Fraisse, Bernard ;
Stievano, Lorenzo ;
Monconduit, Laure .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (51) :20805-20811
[8]   Tin and graphite based nanocomposites: Potential anode for sodium ion batteries [J].
Datta, Moni Kanchan ;
Epur, Rigved ;
Saha, Partha ;
Kadakia, Karan ;
Park, Sung Kyoo ;
Kuma, Prashant N. .
JOURNAL OF POWER SOURCES, 2013, 225 :316-322
[9]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935
[10]  
Fong R, 1990, J ELECTROCHEM SOC, V7, P2010