Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase

被引:952
作者
Madiraju, Anila K. [1 ,2 ,3 ]
Erion, Derek M. [1 ,2 ,3 ]
Rahimi, Yasmeen [1 ]
Zhang, Xian-Man [1 ]
Braddock, Demetrios T. [4 ]
Albright, Ronald A. [4 ]
Prigaro, Brett J. [5 ]
Wood, John L. [6 ]
Bhanot, Sanjay [7 ]
MacDonald, Michael J. [8 ]
Jurczak, Michael J. [1 ]
Camporez, Joao-Paulo [1 ]
Lee, Hui-Young [1 ]
Cline, Gary W. [1 ]
Samuel, Varman T. [1 ]
Kibbey, Richard G. [1 ,2 ]
Shulman, Gerald I. [1 ,2 ,3 ,9 ]
机构
[1] Yale Univ, Sch Med, Dept Internal Med, New Haven, CT 06520 USA
[2] Yale Univ, Sch Med, Dept Cellular & Mol Physiol, New Haven, CT 06520 USA
[3] Yale Univ, Sch Med, Howard Hughes Med Inst, New Haven, CT 06520 USA
[4] Yale Univ, Sch Med, Dept Pathol, New Haven, CT 06520 USA
[5] Colorado State Univ, Dept Chem, Ft Collins, CO 80523 USA
[6] Baylor Univ, Dept Chem & Biochem, Canc Prevent Res Inst Texas Scholar, Waco, TX 76798 USA
[7] ISIS Pharmaceut, Carlsbad, CA 92010 USA
[8] Univ Wisconsin, Sch Med & Publ Hlth, Madison, WI 53706 USA
[9] Univ Copenhagen, Novo Nordisk Fdn Ctr Basic Metab Res, DK-2200 Copenhagen, Denmark
基金
美国国家卫生研究院;
关键词
GLYCEROL 3-PHOSPHATE DEHYDROGENASE; ACTIVATED PROTEIN-KINASE; GLYCEROL-3-PHOSPHATE DEHYDROGENASE; REDOX STATE; HEPATIC GLUCONEOGENESIS; REDUCING EQUIVALENTS; GLUCOSE-HOMEOSTASIS; LIVER; DIET; PHOSPHORYLATION;
D O I
10.1038/nature13270
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Metformin is considered to be one of the most effective therapeutics for treating type 2 diabetes because it specifically reduces hepatic gluconeogenesis without increasing insulin secretion, inducing weight gain or posing a risk of hypoglycaemia(1,2). For over half a century, this agent has been prescribed to patients with type 2 diabetes world wide, yet the underlying mechanism by which metformin inhibits hepatic gluconeogenesis remains unknown. Here we show that metformin non-competitively inhibits the redox shuttle enzyme mitochondrial glycerophosphate dehydrogenase, resulting in an altered hepatocellular redox state, reduced conversion of lactate and glycerol to glucose, and decreased hepatic gluconeogenesis. Acute and chronic low-dose metformin treatment effectively reduced endogenous glucose production, while increasing cytosolic redox and decreasing mitochondrial redox states. Antisense oligonucleotide knockdown of hepatic mitochondrial glycerophosphate dehydrogenase in rats resulted in a phenotype akin to chronic metformin treatment, and abrogated metformin-mediated increases in cytosolic redox state, decreases in plasma glucose concentrations, and inhibition of endogenous glucose production. These findings were replicated in whole-body mitochondrial glycerophosphate dehydrogenase knockout mice. These results have significant implications for understanding the mechanism of metformin's blood glucose lowering effects and provide a new therapeutic target for type 2 diabetes.
引用
收藏
页码:542 / +
页数:17
相关论文
共 33 条
[1]   Standard operating procedures for describing and performing metabolic tests of glucose homeostasis in mice [J].
Ayala, Julio E. ;
Samuel, Varman T. ;
Morton, Gregory J. ;
Obici, Silvana ;
Croniger, Colleen M. ;
Shulman, Gerald I. ;
Wasserman, David H. ;
McGuinness, Owen P. .
DISEASE MODELS & MECHANISMS, 2010, 3 (9-10) :525-534
[2]   A high carbohydrate diet does not induce hyperglycaemia in a mitochondrial glycerol-3-phosphate dehydrogenase-deficient mouse [J].
Barberà, A ;
Gudayol, M ;
Eto, K ;
Corominola, H ;
Maechler, P ;
Miró, O ;
Cardellach, F ;
Gomis, R .
DIABETOLOGIA, 2003, 46 (10) :1394-1401
[3]   STUDIES ON ACTIVE TRANSFER OF REDUCING EQUIVALENTS INTO MITOCHONDRIA VIA MALATE-ASPARTATE SHUTTLE [J].
BREMER, J ;
DAVIS, EJ .
BIOCHIMICA ET BIOPHYSICA ACTA, 1975, 376 (03) :387-397
[4]   Normal thyroid thermogenesis but reduced viability and adiposity in mice lacking the mitochondrial glycerol phosphate dehydrogenase [J].
Brown, LJ ;
Koza, RA ;
Everett, C ;
Reitman, ML ;
Marshall, L ;
Fahien, LA ;
Kozak, LP ;
MacDonald, MJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (36) :32892-32898
[5]   Novel hypotensive agents from Verbesina caracasana.: 8.: Synthesis and pharmacology of (3,4-dimethoxycinnamoyl)-N1-agmatine and synthetic analogues [J].
Carmignani, M ;
Volpe, AR ;
Botta, B ;
Espinal, R ;
De Bonnevaux, SC ;
De Luca, C ;
Botta, M ;
Corelli, F ;
Tafi, A ;
Sacco, R ;
Delle Monache, G .
JOURNAL OF MEDICINAL CHEMISTRY, 2001, 44 (18) :2950-2958
[6]   CHARACTERIZATION OF SHUTTLE MECHANISMS FOR TRANSPORT OF REDUCING EQUIVALENTS INTO MITOCHONDRIA [J].
CEDERBAU.AI ;
LIEBER, CS ;
BEATTIE, DS ;
RUBIN, E .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1973, 158 (02) :763-781
[7]  
COLE ES, 1978, J BIOL CHEM, V253, P7952
[8]   Structure of α-glycerophosphate oxidase from Streptococcus sp.:: A template for the mitochondrial α-glycerophosphate dehydrogenase [J].
Colussi, Timothy ;
Parsonage, Derek ;
Boles, William ;
Matsuoka, Takeshi ;
Mallett, T. Conn ;
Karplus, P. Andrew ;
Claiborne, Al .
BIOCHEMISTRY, 2008, 47 (03) :965-977
[9]   Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome [J].
Cool, Barbara ;
Zinker, Bradley ;
Chiou, William ;
Kifle, Lemma ;
Cao, Ning ;
Perham, Matthew ;
Dickinson, Robert ;
Adler, Andrew ;
Gagne, Gerard ;
Iyengar, Rajesh ;
Zhao, Gang ;
Marsh, Kennan ;
Kym, Philip ;
Jung, Paul ;
Camp, Heidi S. ;
Frevert, Ernst .
CELL METABOLISM, 2006, 3 (06) :403-416
[10]   Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I [J].
El-Mir, MY ;
Nogueira, V ;
Fontaine, E ;
Avéret, N ;
Rigoulet, M ;
Leverve, X .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (01) :223-228