Modelling and detecting deep brain activity with MEG and EEG

被引:50
作者
Attal, Y. [1 ]
Bhattacharjee, M. [1 ]
Yelnik, J. [2 ]
Cottereau, B. [1 ]
Lefevre, J. [1 ]
Okada, Y. [3 ]
Bardinet, E. [1 ]
Chupin, M. [1 ]
Baillet, S. [1 ]
机构
[1] Univ Paris 06, Cognit Neurosci & Brain Imaging Lab, CNRS UPR LENA 640, Hop de la Salpetriere, F-75013 Paris, France
[2] Hop de la Salpetriere, INSERM, U289, Paris, France
[3] Univ New Mexico, Dept Neurol, Albuquerque, NM 87131 USA
关键词
Modelling; MEG; EEG; Basal Ganglia; Hippocampus; Brain Imaging;
D O I
10.1016/j.irbm.2009.01.005
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We introduce an anatomical and electrophysiological model of deep brain structures dedicated to magnetoencephalography (MEG) and electroencephalography (EEG) source imaging. So far, most imaging inverse models considered that MEG/EEG surface signals were predominantly produced by cortical, hence superficial, neural currents. Here we question whether crucial deep brain structures such as the basal ganglia and the hippocampus may also contribute to distant, scalp MEG and EEG measurements. We first design a realistic anatomical and electrophysiological model of these structures and subsequently run Monte-Carlo experiments to evaluate the respective sensitivity of the MEG and EEG to signals from deeper origins. Results indicate that MEG/EEG may indeed localize these deeper generators, which is confirmed here from experimental MEG data reporting on the modulation of alpha (10-12 Hz) brain waves. (C) 2009 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:133 / 138
页数:6
相关论文
共 11 条
  • [1] BAILLET S, 2001, IEEE SIGNAL PROC NOV
  • [2] CHUPIN M, 2002, BIOMAG
  • [3] Anatomically constrained region deformation for the automated segmentation of the hippocampus and the amygdala:: Method and validation on controls and patients with Alzheimer's disease
    Chupin, Marie
    Mukuna-Bantumbakulu, A. Romain
    Hasboun, Dominique
    Bardinet, Eric
    Baillet, Sylvain
    Kinkingnehun, Serge
    Lemieux, Louis
    Dubois, Bruno
    Garnero, Line
    [J]. NEUROIMAGE, 2007, 34 (03) : 996 - 1019
  • [4] GROSS J, 2001, P NATL ACAD SCI US
  • [5] JERBI K, 2007, P NATL ACAD SCI US
  • [6] JERBI K, 2004, NEUROIMAGE, V22
  • [7] MURAKAMI S, 2006, J PHYSL
  • [8] PANTAZIS D, 2005, NEUROIMAGE
  • [9] TESCHE C, 1996, BRAIN RES
  • [10] YELNIK J, 2006, NEUROIMAGE