Viscous vortex patches

被引:47
作者
Danchin, R [1 ]
机构
[1] UNIV PARIS 06,ANAL NUMER LAB,F-75252 PARIS,FRANCE
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 1997年 / 76卷 / 07期
关键词
D O I
10.1016/S0021-7824(97)89964-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Here we investigate the inviscid limit for two dimensional incompressible Navier-Stokes equations when the initial data have striated vorticity (smooth vortex patches for instance). Using uniform estimates for transport-diffusion equations yields independent of the viscosity estimates for the lipschitzian norm of the velocity field. This entails a result of strong convergence for solutions with striated vorticity (thus for vortex patches) when viscosity tends to 0.
引用
收藏
页码:609 / 647
页数:39
相关论文
共 14 条
[1]   REMARKS ON THE INSTABILITY OF THE PROBLEM OF VORTEX PATCHES [J].
ALINHAC, S .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 98 (02) :361-379
[2]  
[Anonymous], 1976, INTERPOLATION SPACES
[3]  
BONY JM, 1981, ANN SCI ECOLE NORM S, V14, P209
[4]  
Chemin J.-Y, 1995, Asterisque, V230
[6]  
Chemin JY, 1996, COMMUN PART DIFF EQ, V21, P1771
[7]   INVISCID LIMIT FOR VORTEX PATCHES [J].
CONSTANTIN, P ;
WU, JH .
NONLINEARITY, 1995, 8 (05) :735-742
[8]  
Friedman A., 1964, Partial Differential Equations of Parabolic Type
[9]   PROPAGATION OF LOCAL SMOOTHNESS FOR SOLUTIONS OF NON-LINEAR HYPERBOLIC-EQUATIONS [J].
GERARD, P ;
RAUCH, J .
ANNALES DE L INSTITUT FOURIER, 1987, 37 (03) :65-84
[10]  
Kato T., 1986, REV MAT IBEROAM, V2, P73, DOI DOI 10.4171/RMI/26