Intraseasonal Latent Heat Flux Based on Satellite Observations

被引:52
作者
Grodsky, Semyon A. [1 ]
Bentamy, Abderrahim [2 ]
Carton, James A. [1 ]
Pinker, Rachel T. [1 ]
机构
[1] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA
[2] IFREMER, F-29280 Plouzane, France
关键词
SEA-SURFACE TEMPERATURE; GLOBAL OCEANS; BULK PARAMETERIZATION; RADIATIVE FLUXES; WESTERN PACIFIC; ATLANTIC-OCEAN; MIXED-LAYER; EL-NINO; VARIABILITY; SCALE;
D O I
10.1175/2009JCLI2901.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Weekly average satellite-based estimates of latent heat flux (LHTFL) are used to characterize spatial patterns and temporal variability in the intraseasonal band (periods shorter than 3 months). As expected, the major portion of intraseasonal variability of LHTFL is due to winds, but spatial variability of humidity and SST are also important. The strongest intraseasonal variability of LHTFL is observed at the midlatitudes. It weakens toward the equator, reflecting weak variance of intraseasonal winds at low latitudes. It also decreases at high latitudes, reflecting the effect of decreased SST and the related decrease of time-mean humidity difference between heights z = 10 m and z = 0 m. Within the midlatitude belts the intraseasonal variability of LHTFL is locally stronger (up to 50 W m(-2)) in regions of major SST fronts (like the Gulf Stream and Agulhas). Here it is forced by passing storms and is locally amplified by unstable air over warm SSTs. Although weaker in amplitude (but still significant), intraseasonal variability of LHTFL is observed in the tropical Indian and Pacific Oceans due to wind and humidity perturbations produced by the Madden-Julian oscillations. In this tropical region intraseasonal LHTFL and incoming solar radiation vary out of phase so that evaporation increases just below the convective clusters. Over much of the interior ocean where the surface heat flux dominates the ocean mixed layer heat budget, intraseasonal SST cools in response to anomalously strong upward intraseasonal LHTFL. This response varies geographically, in part because of geographic variations of mixed layer depth and the resulting variations in thermal inertia. In contrast, in the eastern tropical Pacific and Atlantic cold tongue regions intraseasonal SST and LHTFL are positively correlated. This surprising result occurs because in these equatorial upwelling areas SST is controlled by advection rather than by surface fluxes. Here LHTFL responds to rather than drives SST.
引用
收藏
页码:4539 / 4556
页数:18
相关论文
共 58 条
[1]  
[Anonymous], GLOBAL ATMOS OCEAN S
[2]  
[Anonymous], B AM METEOROL SOC
[3]   Wind-driven latent heat flux and the intraseasonal oscillation [J].
Araligidad, Nilesh M. ;
Maloney, Eric D. .
GEOPHYSICAL RESEARCH LETTERS, 2008, 35 (04)
[4]   The influence of the marine atmospheric boundary layer on ERS 1 synthetic aperture radar imagery of the Gulf Stream [J].
Beal, RC ;
Kudryavtsev, VN ;
Thompson, DR ;
Grodsky, SA ;
Tilley, DG ;
Dulov, VA ;
Gaber, HC .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1997, 102 (C3) :5799-5814
[5]  
Bentamy A, 2003, J CLIMATE, V16, P637, DOI 10.1175/1520-0442(2003)016<0637:SEOWSA>2.0.CO
[6]  
2
[7]  
Bentamy A., 2008, FLUX NEWS, V5, P14
[8]   Regional weather patterns during anomalous air-sea fluxes at the Kuroshio Extension Observatory (KEO) [J].
Bond, Nicholas A. ;
Cronin, Meghan F. .
JOURNAL OF CLIMATE, 2008, 21 (08) :1680-1697
[9]  
Bourles B, 2008, B AM METEOROL SOC, V89, P1111, DOI 10.1175/2008BAMS2462.1
[10]  
Chou SH, 2003, J CLIMATE, V16, P3256, DOI 10.1175/1520-0442(2003)016<3256:STHAMF>2.0.CO