Rescaling invariance and anomalous transport in a stochastic layer

被引:16
作者
Abdullaev, SS [1 ]
Spatschek, KH [1 ]
机构
[1] Univ Dusseldorf, Inst Theoret Phys 1, D-40225 Dusseldorf, Germany
关键词
D O I
10.1103/PhysRevE.60.R6287
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The anomalous chaotic transport in a one-degree-of-freedom Hamiltonian system subjected to a small time-periodic perturbation is investigated. Strong quasiperiodic dependencies of the statistical properties of the motion on log epsilon are found, where epsilon is a perturbation parameter. The period log lambda depends on the rescaling parameter lambda, which is determined only by the frequency of perturbation and behavior of unperturbed Hamiltonian near a saddle point. The results confirm and generalize a recently established new universal rescaling property of perturbed motion near a saddle point. [S1063-651X(99)51712-1].
引用
收藏
页码:R6287 / R6290
页数:4
相关论文
共 29 条
[1]   SELF-SIMILARITY OF STOCHASTIC MAGNETIC-FIELD LINES NEAR THE X-POINT [J].
ABDULLAEV, SS ;
ZASLAVSKY, GM .
PHYSICS OF PLASMAS, 1995, 2 (12) :4533-4541
[2]   Renormalization invariance of a Hamiltonian system near the saddle point [J].
Abdullaev, SS .
PHYSICS LETTERS A, 1997, 234 (04) :281-290
[3]   Application of the separatrix map to study perturbed magnetic field lines near the separatrix [J].
Abdullaev, SS ;
Zaslavsky, GM .
PHYSICS OF PLASMAS, 1996, 3 (02) :516-528
[4]  
ABDULLAEV SS, 1994, B AM PHYS SOC, V39, P1659
[5]  
ANGELO FD, 1996, PHYS PLASMAS, V3, P2353
[6]   ANOMALOUS TRANSPORT IN TURBULENT PLASMAS AND CONTINUOUS-TIME RANDOM-WALKS [J].
BALESCU, R .
PHYSICAL REVIEW E, 1995, 51 (05) :4807-4822
[7]   Continuous time random walk model for standard map dynamics [J].
Balescu, R .
PHYSICAL REVIEW E, 1997, 55 (03) :2465-2474
[8]   ANOMALOUS DIFFUSION IN DISORDERED MEDIA - STATISTICAL MECHANISMS, MODELS AND PHYSICAL APPLICATIONS [J].
BOUCHAUD, JP ;
GEORGES, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 195 (4-5) :127-293
[9]  
Chirikov B. V., 1991, Chaos, Solitons and Fractals, V1, P79, DOI 10.1016/0960-0779(91)90057-G
[10]   UNIVERSAL INSTABILITY OF MANY-DIMENSIONAL OSCILLATOR SYSTEMS [J].
CHIRIKOV, BV .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1979, 52 (05) :263-379