A new Groucho TLE4 protein may regulate the repressive activity of Pax5 in human B lymphocytes

被引:32
作者
Milili, M
Gauthier, L
Veran, J
Mattei, MG
Schiff, C
机构
[1] Ctr Immunol Marseille Luminy, CNRS INSERM Univ Med, F-13288 Marseille 09, France
[2] Fac Med Timone, INSERM, U491, Marseille, France
关键词
D O I
10.1046/j.1365-2567.2002.01456.x
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
During mouse B-cell development, Pax5 is an essential transcription factor that acts as an activator of B-cell-specific genes and as a repressor of alternative lineage fates. The repressive function is mediated by the recruitment of members of the Groucho co-repressor family. Using an RNA display approach, we have isolated a transcript, called QD, specifically expressed in human pro-B and pre-B cells, which is derived from the human Groucho TLE4 gene. The QD transcript contains the first four TLE4 exons and an intronic sequence 3' of exon 4, demonstrating that QD is a splice variant of TLE4. The putative resulting protein of 94 amino acids corresponds to approximately half of an N-terminal tetramerization domain. We also show specific expression of TLE4 transcripts in human B cells and of TLE4 proteins in B-cell nuclei. Moreover, we demonstrate that recombinant QD protein binds to the TLE4 Q domain and is able to abolish the TLE4/Pax5 interaction. Thus, QD could act as a negative regulator of TLE4 function, in early B-cell differentiation.
引用
收藏
页码:447 / 455
页数:9
相关论文
共 35 条
[1]   ORDERED REARRANGEMENT OF IMMUNOGLOBULIN HEAVY-CHAIN VARIABLE REGION SEGMENTS [J].
ALT, FW ;
YANCOPOULOS, GD ;
BLACKWELL, TK ;
WOOD, C ;
THOMAS, E ;
BOSS, M ;
COFFMAN, R ;
ROSENBERG, N ;
TONEGAWA, S ;
BALTIMORE, D .
EMBO JOURNAL, 1984, 3 (06) :1209-1219
[2]   Both E12 and E47 allow commitment to the B cell lineage [J].
Bain, G ;
Maandag, ECR ;
Riele, HPJT ;
Feeney, AJ ;
Sheehy, A ;
Schlissel, M ;
Shinton, SA ;
Hardy, RR ;
Murre, C .
IMMUNITY, 1997, 6 (02) :145-154
[3]   E2A PROTEINS ARE REQUIRED FOR PROPER B-CELL DEVELOPMENT AND INITIATION OF IMMUNOGLOBULIN GENE REARRANGEMENTS [J].
BAIN, G ;
MAANDAG, ECR ;
IZON, DJ ;
AMSEN, D ;
KRUISBEEK, AM ;
WEINTRAUB, BC ;
KROP, I ;
SCHLISSEL, MS ;
FEENEY, AJ ;
VANROON, M ;
VANDERVALK, M ;
TERIELE, HPJ ;
BERNS, A ;
MURRE, C .
CELL, 1994, 79 (05) :885-892
[4]   IDENTIFICATION OF DIFFERENTIALLY EXPRESSED MESSENGER-RNA SPECIES BY AN IMPROVED DISPLAY TECHNIQUE (DDRT-PCR) [J].
BAUER, D ;
MULLER, H ;
REICH, J ;
RIEDEL, H ;
AHRENKIEL, V ;
WARTHOE, P ;
STRAUSS, M .
NUCLEIC ACIDS RESEARCH, 1993, 21 (18) :4272-4280
[5]   All Tcf HMG box transcription factors interact with Groucho-related co-repressors [J].
Brantjes, H ;
Roose, J ;
van de Wetering, M ;
Clevers, H .
NUCLEIC ACIDS RESEARCH, 2001, 29 (07) :1410-1419
[6]   Groucho/TLE family proteins and transcriptional repression [J].
Chen, GQ ;
Courey, AJ .
GENE, 2000, 249 (1-2) :1-16
[7]   A role for Groucho tetramerization in transcriptional repression [J].
Chen, GQ ;
Nguyen, PH ;
Courey, AJ .
MOLECULAR AND CELLULAR BIOLOGY, 1998, 18 (12) :7259-7268
[8]   A functional interaction between the histone deacetylase Rpd3 and the corepressor Groucho in Drosophila development [J].
Chen, GQ ;
Fernandez, J ;
Mische, S ;
Courey, AJ .
GENES & DEVELOPMENT, 1999, 13 (17) :2218-2230
[9]   The homeodomain protein NK-3 recruits Groucho and a histone deacetylase complex to repress transcription [J].
Choi, CY ;
Kim, YH ;
Kwon, HJ ;
Kim, Y .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (47) :33194-33197
[10]   Transcriptional repression by Pax5 (BSAP) through interaction with corepressors of the Groucho family [J].
Eberhard, D ;
Jiménez, G ;
Heavey, B ;
Busslinger, M .
EMBO JOURNAL, 2000, 19 (10) :2292-2303