Abundance, species richness and energy availability in the North American avifauna

被引:91
作者
Evans, Karl L. [1 ]
James, Neil A. [1 ]
Gaston, Kevin J. [1 ]
机构
[1] Univ Sheffield, Dept Anim & Plant Sci, Biodivers & Macroecol Grp, Sheffield S10 2TN, S Yorkshire, England
来源
GLOBAL ECOLOGY AND BIOGEOGRAPHY | 2006年 / 15卷 / 04期
关键词
abundance; birds; NDVI; migrants; more individuals hypothesis; North America; species-energy relationships; temperature;
D O I
10.1111/j.1466-822x.2006.00228.x
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Aim To determine how species richness, abundance, biomass, energy use and mean number of individuals per species scale with environmental energy availability in wintering and breeding avian assemblages, and to contrast assemblages of (i) common and rare species and (ii) breeding residents and migrants. To assess whether such patterns are compatible with the 'more individuals hypothesis' (MIH) that high-energy areas are species-rich because they support larger populations that are buffered against extinction. Location The North American continent (latitudinal range 23.4 degrees-48.1 degrees N; longitudinal range 124.2 degrees-68.7 degrees W). Methods Avian species richness, abundance, biomass and energy use were calculated for 295 Resident Bird Count plots. Environmental energy availability was measured using ambient temperature and the Normalized Difference Vegetation Index (NDVI), a close correlate of plant productivity. Analyses took plot area into account, and were conducted (with and without taking habitat type into account) using general linear models and spatial mixed models. Results Positive species-energy relationships were exhibited by both wintering and breeding assemblages, but were stronger in the former. The structure of winter assemblages responded more strongly to temperature than NDVI, while breeding assemblages tended to respond more strongly to NDVI. Breeding residents responded to annual measures of energy availability while breeding migrants and the winter assemblage responded more strongly to seasonal measures. In the winter assemblage, rare and common species exhibited species-energy relationships of a similar strength, but common breeding species exhibited a much stronger relationship than rare breeding species. In both breeding and wintering assemblages, abundance, biomass and energy use increased with energy availability and species richness. Energy availability was a poor predictor of the mean number of individuals per species. Main conclusions The nature of the species-energy relationship varies seasonally and with the manner in which energy availability is measured. Our data suggest that residents are less able to respond to seasonal fluxes in resource availability than long-distance migrants. Increasing species richness and energy availability is associated with increasing numbers of individuals, biomass and energy use. While these observations are compatible with the MIH our data provide only equivocal support for this hypothesis, as the rarest species do not exhibit the strongest species-energy relationships.
引用
收藏
页码:372 / 385
页数:14
相关论文
共 68 条
[1]  
Bibby CJ, 2000, BIRD CENSUS TECHNIQU, P42
[2]   Response of NDVI, biomass, and ecosystem gas exchange to long-term warming and fertilization in wet sedge tundra [J].
Boelman, NT ;
Stieglitz, M ;
Rueth, HM ;
Sommerkorn, M ;
Griffin, KL ;
Shaver, GR ;
Gamon, JA .
OECOLOGIA, 2003, 135 (03) :414-421
[3]   Structure of the species-energy relationship [J].
Bonn, A ;
Storch, D ;
Gaston, KJ .
PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2004, 271 (1549) :1685-1691
[4]  
BROWN JH, 1981, AM ZOOL, V21, P877
[5]   Kullback-Leibler information as a basis for strong inference in ecological studies [J].
Burnham, KP ;
Anderson, DR .
WILDLIFE RESEARCH, 2001, 28 (02) :111-119
[6]  
Cressie NA, 1991, STAT SPATIAL DATA
[7]  
CROCKER D, 2002, PROJECT PN0908 METHO
[8]   Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness [J].
Currie, DJ ;
Mittelbach, GG ;
Cornell, HV ;
Field, R ;
Guégan, JF ;
Hawkins, BA ;
Kaufman, DM ;
Kerr, JT ;
Oberdorff, T ;
O'Brien, E ;
Turner, JRG .
ECOLOGY LETTERS, 2004, 7 (12) :1121-1134
[9]   GLOBAL PATTERNS OF ANIMAL ABUNDANCE AND SPECIES ENERGY USE [J].
CURRIE, DJ ;
FRITZ, JT .
OIKOS, 1993, 67 (01) :56-68
[10]  
Dunning J.B., 1993, CRC HDB AVIAN BODY M