Barrier functions in interior point methods

被引:130
作者
Guler, O
机构
[1] Dept. of Mathematics and Statistics, University of Maryland, Baltimore County, Baltimore
关键词
barrier functions; interior point methods; self-concordance; convex cones; characteristic function; duality mapping; automorphism group of a cone; homogeneous cones; homogeneous self-dual cones;
D O I
10.1287/moor.21.4.860
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We show that the universal barrier function of a convex cone introduced by Nesterov and Nemirovskii is the logarithm of the characteristic function of the cone. This interpretation demonstrates the invariance of the universal barrier under the automorphism group of the underlying cone. This provides a simple method for calculating the universal barrier for homogeneous cones. We identify some known barriers as the universal barrier scaled by an appropriate constant. We also calculate some new universal barrier functions. Our results connect the field of interior point methods to several branches of mathematics such as Lie groups, Jordan algebras, Siegel domains, differential geometry, complex analysis of several variables, etc.
引用
收藏
页码:860 / 885
页数:26
相关论文
共 34 条
[1]  
ALIZADEH F, 1991, THESIS U MINNESOTA M
[2]  
BARVINOK AB, 1992, ST PETERSB MATH J, V4, P1
[3]  
Cartan E., 1935, Abhandlungen aus dem Mathematischen Seminar der Universitat Hamburg, VVolume 11, P116
[4]   HOMOGENEOUS SIEGEL DOMAINS [J].
DORFMEISTER, J .
NAGOYA MATHEMATICAL JOURNAL, 1982, 86 (JUN) :39-83
[5]   ALGEBRAIC DESCRIPTION OF HOMOGENEOUS CONES [J].
DORFMEISTER, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 255 (NOV) :61-89
[6]  
DORFMEISTER J, 1979, T AM MATH SOC, V252, P321
[7]  
Evans L. C., 2018, Measure Theory and Fine Properties of Functions
[8]  
Faraut J., 1994, Oxford Mathematical Monographs
[9]  
Federer H., 1969, GEOMETRIC MEASURE TH
[10]  
Gindikin S.G., 1964, Russ. Math. Surweys, V19, P1, DOI [10.1070/RM1964v019n04ABEH001153, DOI 10.1070/RM1964V019N04ABEH001153]