A Survey of Uncertain Data Algorithms and Applications

被引:258
作者
Aggarwal, Charu C. [1 ]
Yu, Philip S. [2 ]
机构
[1] IBM Corp, TJ Watson Res Ctr, Hawthorne, NY 10532 USA
[2] Univ Illinois, Dept Comp Sci, Chicago, IL 60607 USA
关键词
Mining methods and algorithms; database applications; database management; information technology and systems; IMPRECISE;
D O I
10.1109/TKDE.2008.190
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, a number of indirect data collection methodologies have led to the proliferation of uncertain data. Such databases are much more complex because of the additional challenges of representing the probabilistic information. In this paper, we provide a survey of uncertain data mining and management applications. We will explore the various models utilized for uncertain data representation. In the field of uncertain data management, we will examine traditional database management methods such as join processing, query processing, selectivity estimation, OLAP queries, and indexing. In the field of uncertain data mining, we will examine traditional mining problems such as frequent pattern mining, outlier detection, classification, and clustering. We discuss different methodologies to process and mine uncertain data in a variety of forms.
引用
收藏
页码:609 / 623
页数:15
相关论文
共 79 条
[1]  
ABITEBOUL S, 1987, P ACM SIGMOD
[2]  
Aggarwal CC, 2009, ADV DATABASE SYST, V35, P1, DOI 10.1007/978-0-387-09690-2
[3]  
AGGARWAL CC, 2008, P SIAM INT C DAT MIN
[4]  
ANDRITSOS P, 2006, P 22 IEEE INT C DAT
[5]  
ANKERST M, 1992, P ACM SIGMOD
[6]  
[Anonymous], P 27 ACM SIGMOD SIGA
[7]  
[Anonymous], 1991, Problem of Incomplete Information in Relational Databases
[8]  
[Anonymous], 2004, P 30 INT C VER LARG
[9]  
[Anonymous], P 23 IEEE INT C DAT
[10]  
[Anonymous], P 24 IEEE INT C DAT