Cell fouling resistance of polymer brushes grafted from Ti substrates by surface-initiated polymerization: Effect of ethylene glycol side chain length

被引:172
作者
Fan, Xiaowu [1 ]
Lin, Lijun [1 ]
Messersmith, Phillip B. [1 ]
机构
[1] Northwestern Univ, Dept Biomed Engn, Robert R McCormick Sch Engn & Appl Sci, Evanston, IL 60208 USA
关键词
D O I
10.1021/bm060276k
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
This paper presents a comparative study on the antifouling properties of poly(ethylene glycol) (PEG)-based polymer coatings prepared by surface-initiated polymerization (SIP). Three types of poly(oligo(ethylene glycol) methyl ether methacrylate) (POEGMEMA) polymer thin films of approximate 100 nm thickness were grafted from a catechol initiator that was immobilized on a Ti substrate. OEGMEMA monomers containing side chains of 4, 9, and 23 EG units were used in surface-initiated atom transfer radical polymerization (SI-ATRP) to form POEGMEMA-4, -9, and -23 polymer brushes. The chemical composition, thickness, and wettability of the polymer brushes were characterized by X-ray photoelectron spectroscopy (XPS), ellipsometry, and static water contact angle measurements, respectively. The dependence of antifouling performance on EG side chain length was systemically tested and compared by 3T3 fibroblast cell adhesion assays. Results from 4-h cell culture experiments revealed the complete absence of cell attachment on all the grafted Ti substrates. Excellent cell fouling resistance continued with little dependence on EG side chain length up to three weeks, after which long-term antifouling performance depended on the EG chain length as the grafted samples reached confluent cell coverage in 7, 10, and 11 weeks for POEGMEMA-4, -9, and -23, respectively.
引用
收藏
页码:2443 / 2448
页数:6
相关论文
共 51 条
[1]   Surface initiated polymerization from nanoparticle surfaces [J].
Advincula, RC .
JOURNAL OF DISPERSION SCIENCE AND TECHNOLOGY, 2003, 24 (3-4) :343-361
[2]   Oligo(ethylene glycol) containing polymer brushes as bioselective surfaces [J].
Andruzzi, L ;
Senaratne, W ;
Hexemer, A ;
Sheets, ED ;
Ilic, B ;
Kramer, EJ ;
Baird, B ;
Ober, CK .
LANGMUIR, 2005, 21 (06) :2495-2504
[3]   Peptide-modified p(AAm-co-EG/AAc) IPNs grafted to bulk titanium modulate osteoblast behavior in vitro [J].
Barber, TA ;
Golledge, SL ;
Castner, DG ;
Healy, KE .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2003, 64A (01) :38-47
[4]  
Bontempo D, 2002, ADV MATER, V14, P1239, DOI 10.1002/1521-4095(20020903)14:17<1239::AID-ADMA1239>3.0.CO
[5]  
2-P
[6]   Long-term stability of grafted polyethylene glycol surfaces for use with microstamped substrates in neuronal cell culture [J].
Branch, DW ;
Wheeler, BC ;
Brewer, GJ ;
Leckband, DE .
BIOMATERIALS, 2001, 22 (10) :1035-1047
[7]  
Brunette D.M., 2001, Titanium in Medicine. Engineering Materials
[8]  
Chastain J., 1992, PerkinElmer Corporation, V40, P221, DOI DOI 10.1007/S10853-011-5503-Y
[9]   Protein resistance of titanium oxide surfaces modified by biologically inspired mPEG-DOPA [J].
Dalsin, JL ;
Lin, LJ ;
Tosatti, S ;
Vörös, J ;
Textor, M ;
Messersmith, PB .
LANGMUIR, 2005, 21 (02) :640-646
[10]   Mussel adhesive protein mimetic polymers for the preparation of nonfouling surfaces [J].
Dalsin, JL ;
Hu, BH ;
Lee, BP ;
Messersmith, PB .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (14) :4253-4258