The influence of DNA binding on the backbone dynamics of the yeast cell-cycle protein Mbp1*

被引:17
作者
McIntosh, PB
Taylor, IA
Frenkiel, TA
Smerdon, SJ
Lane, AN
机构
[1] Natl Inst Med Res, Div Mol Struct, London NW7 1AA, England
[2] Natl Inst Med Res, Div Prot Struct, London NW7 1AA, England
[3] Natl Inst Med Res, Biomed NMR Ctr, London NW7 1AA, England
基金
英国医学研究理事会;
关键词
backbone dynamics; chemical exchange; Mbp1-DNA interaction; spectral density mapping;
D O I
10.1023/A:1008374129366
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mbp1 is a transcription factor involved in the regulation of the cell cycle in yeast. The N-terminus of this protein contains a DNA binding domain that includes a winged helix-turn-helix motif. The C-terminal 24 residues of this domain (the `tail') are disordered in the crystal state, but are important for DNA binding. We have measured (1)5N NMR relaxation rates at 11.75 and 14.1 T to determine the dynamics of the free protein and in its complex with a specific DNA duplex. The dynamics data were quantitatively analysed using both spectral density mapping and the Lipari-Szabo formalism including the effects of chemical exchange and rotational anisotropy. A detailed analysis has been made of the effect of anisotropy, exchange and experimental precision on the recovered motional parameters. The backbone NH relaxation is affected by motions on a variety of time scales from millisecond to tens of picoseconds. The relaxation data show a structured core of 100 residues corresponding to that observed in the crystal state. Within the core of the protein, two regions on either side of the putative recognition helix (helix B) show slow (ca. 0.2 ms) conformational exchange dynamics that are quenched upon DNA binding. The C-terminal 24 residues are generally more dynamic than in the core. However, in the free protein, a stretch of similar to 8 residues in the middle of the tail show relaxation behaviour similar to that in the core, indicating a structured region. NOEs between Ala 114 in this structured part of the tail and residues in the N-terminal beta strand of the core of the protein demonstrate that the tail folds back onto the core of the protein. In the complex with DNA, the structured part of the tail extends by ca. 3 residues. These data provide a framework for understanding the biochemical data on the mechanism and specificity of DNA binding.
引用
收藏
页码:183 / 196
页数:14
相关论文
共 57 条
[1]  
[Anonymous], NUMERICAL RECIPES
[2]   BACKBONE DYNAMICS OF CALMODULIN STUDIED BY N-15 RELAXATION USING INVERSE DETECTED 2-DIMENSIONAL NMR-SPECTROSCOPY - THE CENTRAL HELIX IS FLEXIBLE [J].
BARBATO, G ;
IKURA, M ;
KAY, LE ;
PASTOR, RW ;
BAX, A .
BIOCHEMISTRY, 1992, 31 (23) :5269-5278
[3]   COMPARISON OF DIFFERENT MODES OF 2-DIMENSIONAL REVERSE-CORRELATION NMR FOR THE STUDY OF PROTEINS [J].
BAX, A ;
IKURA, M ;
KAY, LE ;
TORCHIA, DA ;
TSCHUDIN, R .
JOURNAL OF MAGNETIC RESONANCE, 1990, 86 (02) :304-318
[4]  
BODENHAUSEN G, 1980, PHYS LETT, V175, P477
[5]   HUNDREDS OF ANKYRIN-LIKE REPEATS IN FUNCTIONALLY DIVERSE PROTEINS - MOBILE MODULES THAT CROSS PHYLA HORIZONTALLY [J].
BORK, P .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1993, 17 (04) :363-374
[6]   INFLUENCE OF CROSS-CORRELATION BETWEEN DIPOLAR AND ANISOTROPIC CHEMICAL-SHIFT RELAXATION MECHANISMS UPON LONGITUDINAL RELAXATION RATES OF N-15 IN MACROMOLECULES [J].
BOYD, J ;
HOMMEL, U ;
CAMPBELL, ID .
CHEMICAL PHYSICS LETTERS, 1990, 175 (05) :477-482
[7]   SIMILARITY BETWEEN CELL-CYCLE GENES OF BUDDING YEAST AND FISSION YEAST AND THE NOTCH GENE OF DROSOPHILA [J].
BREEDEN, L ;
NASMYTH, K .
NATURE, 1987, 329 (6140) :651-654
[8]   Backbone dynamics of the A-domain of HMG1 as studied by N-15 NMR spectroscopy [J].
Broadhurst, RW ;
Hardman, CH ;
Thomas, JO ;
Laue, ED .
BIOCHEMISTRY, 1995, 34 (51) :16608-16617
[9]   Determining the magnitude of the fully asymmetric diffusion tensor from heteronuclear relaxation data in the absence of structural information [J].
Clore, GM ;
Gronenborn, AM ;
Szabo, A ;
Tjandra, N .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1998, 120 (19) :4889-4890
[10]   ANALYSIS OF THE BACKBONE DYNAMICS OF INTERLEUKIN-1-BETA USING 2-DIMENSIONAL INVERSE DETECTED HETERONUCLEAR N-15-H-1 NMR-SPECTROSCOPY [J].
CLORE, GM ;
DRISCOLL, PC ;
WINGFIELD, PT ;
GRONENBORN, AM .
BIOCHEMISTRY, 1990, 29 (32) :7387-7401