WaveShrink with firm shrinkage

被引:33
作者
Gao, HY [1 ]
Bruce, AG [1 ]
机构
[1] MATHSOFT INC,SEATTLE,WA 98109
关键词
bias estimation; firm shrinkage; minimax thresholds; nonparametric regression; signal de-noising; trend estimation; variance estimation; wavelet transform; WaveShrink;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Donoho and Johnstone's (1994) WaveShrink procedure has proven valuable for signal de-noising and non-parametric regression. WaveShrink has very broad asymptotic near-optimality properties. In this paper, Ne introduce a new shrinkage scheme, firm, which generalizes the hard and soft shrinkage proposed by Donoho and Johnstone (1994). We derive minimax thresholds and provide formulas for computing the pointwise variance, bias, and risk for WaveShrink with firm shrinkage. We study the properties of the shrinkage functions, and demonstrate that firm shrinkage offers advantages over both hard shrinkage (uniformly smaller risk and less sensitivity to small perturbations in the data) and soft shrinkage (smaller bias and overall L-2 risk): Software is provided to reproduce all results in this paper.
引用
收藏
页码:855 / 874
页数:20
相关论文
共 11 条
  • [1] BRILLINGER DR, 1995, J NONPARAMETR STAT, P4
  • [2] Understanding WaveShrink: Variance and bias estimation
    Bruce, AG
    Gao, HY
    [J]. BIOMETRIKA, 1996, 83 (04) : 727 - 745
  • [3] BRUCE AG, 1996, S PLUS WAVELETS VERS
  • [4] Buckheit JB, 1995, WAVELETS STAT, P55
  • [5] Cohen A., 1993, Applied and Computational Harmonic Analysis, V1, P54, DOI 10.1006/acha.1993.1005
  • [6] 2 NEW UNCONSTRAINED OPTIMIZATION ALGORITHMS WHICH USE FUNCTION AND GRADIENT VALUES
    DENNIS, JE
    MEI, HHW
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1979, 28 (04) : 453 - 482
  • [7] *DIV MATHS INC, 1993, S PLUS US MAN VERS 3
  • [8] IDEAL SPATIAL ADAPTATION BY WAVELET SHRINKAGE
    DONOHO, DL
    JOHNSTONE, IM
    [J]. BIOMETRIKA, 1994, 81 (03) : 425 - 455
  • [9] DONOHO DL, 1995, J ROY STAT SOC B MET, V57, P301
  • [10] HAMPEL F. R., 1986, Robust Statistics: The Approach Based on Influence Functions