1. Cytochrome P450 (CYP) 3A catalysis of testosterone 6beta-hydroxylation in female rat liver microsomes was significantly induced, then reached a plateau level after pretreatment with 80 mg kg -1 day -1 dexamethasone (DEX) for 3 days. 2. Midazolam was mainly metabolized by CYP3A in DEX-treated female rat liver microsomes from an immuno-inhibition study, and the apparent K m was 1.8 muM, similar to that in human microsomes. 3. Ketoconazole and erythromycin, typical CYP3A inhibitors, demonstrated extensive inhibition of midazolam metabolism in DEX-treated female rat liver microsomes, and the apparent K i values were 0.088 and 91.2 muM, respectively. The values were similar to those in humans, suggesting that DEX-treated female rat liver microsomes have properties similar to those of humans. 4. After oral administration of midazolam, the plasma midazolam concentration in DEX-treated female rats significantly decreased compared with control female rats. The area under the plasma concentration curve (AUC) and elimination half-life were one-11th and one-20th of those of control female rats, respectively. 5. Using DEX-treated female rats, the effect of CYP3A inhibitors on midazolam pharmacokinetics was evaluated. The AUC and maximum concentration in plasma ( C max ) increased when ketoconazole was co-administered with midazolam. 6. It was shown that the drug-drug interaction that occurs in vitro is also observed in vivo after oral administration of midazolam. In conclusion, the DEX-treated female rat could be a useful model for evaluating drug-drug interactions based on CYP3A enzyme inhibition.