Role of Ndt80, Sum1, and Swe1 as targets of the meiotic recombination checkpoint that control exit from pachytene and spore formation in Saccharomyces cerevisiae

被引:53
作者
Pak, J
Segall, J [1 ]
机构
[1] Univ Toronto, Dept Biochem, Toronto, ON M5S 1A8, Canada
[2] Univ Toronto, Dept Mol & Med Genet, Toronto, ON M5S 1A8, Canada
关键词
D O I
10.1128/MCB.22.18.6430-6440.2002
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The meiotic recombination checkpoint, which is triggered by defects in recombination or chromosome synapsis, arrests sporulating cells of Saccharomyces cerevisiae at pachytene by preventing accumulation of active Clb-Cdc28. We compared the effects of manipulating the three known targets of the meiotic recombination checkpoint, NDT80, SWE1, and SUM1, in dmc1-arrested cells. Ndt80 is an activator of a set of middle sporulation-specific genes (MSGs), which includes CLB genes and genes involved in spore wall formation; Swe1 inhibits Clb-Cdc28 activity; and Sum1 is a repressor of NDT80 and some MSGs. Activation of the checkpoint leads to inhibition of Ndt80 activity and to stabilization of Swe1 and Sum1. Thus, dmc1-arrested cells fail to express MSGs, arrest at pachytene, and do not form spores. Our study shows that dmc1/dmc1 sum1/sum1 cells expressed MSGs prematurely and at high levels, entered the meiotic divisions efficiently, and in some cases formed asci containing mature spores. In contrast, dmc1/dmc1 swe1/swe1 cells expressed MSGs at a very low level, were inefficient and delayed in entry into the meiotic divisions, and never formed mature spores. We found that cells of dmc1/dmc1 sum1/sum1 ndt80/ndt80 and dmc1/ldmc1 swe1/swe1 ndt80/ndt80 strains arrested at pachytene and that dmc1/dmc1 or dmc1/dmc1 swe1/swe1 cells overexpressing NDT80 were less efficient in bypassing checkpoint-mediated arrest than dmc1/dmc1 sum1/sum1 cells. Our results are consistent with previous suggestions that increased Clb-Cdc28 activity, caused by mutation of SWE1 or by an NDT80-dependent increase in CLB expression, allows dmc1/dmc1 cells to exit pachytene and that subsequent upregulation of Ndt80 activity by a feedback mechanism promotes entry into the meiotic divisions. Spore morphogenesis, however, requires efficient and timely activation of MSGs, which we speculate was achieved in dmc1/dmc1 sum1/sum1 cells by premature expression of NDT80.
引用
收藏
页码:6430 / 6440
页数:11
相关论文
共 56 条
[1]   REGULATION OF P34CDC28 TYROSINE PHOSPHORYLATION IS NOT REQUIRED FOR ENTRY INTO MITOSIS IN SACCHAROMYCES-CEREVISIAE [J].
AMON, A ;
SURANA, U ;
MUROFF, I ;
NASMYTH, K .
NATURE, 1992, 355 (6358) :368-371
[2]   Bypass of a meiotic checkpoint by overproduction of meiotic chromosomal proteins [J].
Bailis, JM ;
Smith, AV ;
Roeder, GS .
MOLECULAR AND CELLULAR BIOLOGY, 2000, 20 (13) :4838-4848
[3]   Pachytene exit controlled by reversal of Mek1-dependent phosphorylation [J].
Bailis, JM ;
Roeder, GS .
CELL, 2000, 101 (02) :211-221
[4]   DMC1 - A MEIOSIS-SPECIFIC YEAST HOMOLOG OF ESCHERICHIA-COLI RECA REQUIRED FOR RECOMBINATION, SYNAPTONEMAL COMPLEX-FORMATION, AND CELL-CYCLE PROGRESSION [J].
BISHOP, DK ;
PARK, D ;
XU, LZ ;
KLECKNER, N .
CELL, 1992, 69 (03) :439-456
[5]   PROPERTIES OF SACCHAROMYCES-CEREVISIAE WEE1 AND ITS DIFFERENTIAL REGULATION OF P34(CDC28) IN RESPONSE TO G(1) AND G(2) CYCLINS [J].
BOOHER, RN ;
DESHAIES, RJ ;
KIRSCHNER, MW .
EMBO JOURNAL, 1993, 12 (09) :3417-3426
[6]  
Chi MH, 1996, MOL CELL BIOL, V16, P4281
[7]   The transcriptional program of sporulation in budding yeast [J].
Chu, S ;
DeRisi, J ;
Eisen, M ;
Mulholland, J ;
Botstein, D ;
Brown, PO ;
Herskowitz, I .
SCIENCE, 1998, 282 (5389) :699-705
[8]   Gametogenesis in yeast is regulated by a transcriptional cascade dependent on Ndt80 [J].
Chu, S ;
Herskowitz, I .
MOLECULAR CELL, 1998, 1 (05) :685-696
[9]  
Clarke DJ, 2000, BIOESSAYS, V22, P351, DOI 10.1002/(SICI)1521-1878(200004)22:4<351::AID-BIES5>3.0.CO
[10]  
2-W