Multi-objective fast messy genetic algorithm solving deception problems

被引:2
作者
Day, RO [1 ]
Kleeman, MP [1 ]
Lamont, GB [1 ]
机构
[1] USAF, Inst Technol, Grad Sch Engn & Manangement, Dept Elect & Comp Engn, Wright Patterson AFB, OH 45433 USA
来源
CEC2004: PROCEEDINGS OF THE 2004 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2 | 2004年
关键词
D O I
10.1109/CEC.2004.1331074
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deception problems are among the hardest problems to solve using ordinary genetic algorithms. Recent studies show that Bayesian optimization can help in solving these problems. This paper compares the results acquired from the multiobjective fast messy genetic algorithm (MOMGA-II), multiobjective Bayesian optimization algorithm (mBOA), and the non-dominated sorting genetic algorithm-II (NSGA-II) when applied to three different deception problems. The three deceptive problems studies are: interleaved minimal deceptive problem, interleaved 5-bit trap function, and the interleaved 6-bit bipolar function. The unmodified MOMGA-II, by design, explicitly learns building block linkages which is required if an algorithm is to solve these hard deception problems. Preliminary results using the MOMGA-II are favorable.
引用
收藏
页码:1502 / 1509
页数:8
相关论文
共 12 条
[1]  
Coello C. A. C., 2002, EVOLUTIONARY ALGORIT
[2]  
Day RO, 2003, IEEE C EVOL COMPUTAT, P2277
[3]  
DEB K, 1993, FOUNDATIONS OF GENETIC ALGORITHMS 2, P93
[4]  
DEB KA, 1992, 92003 U ILL URB
[5]  
FONSECA CM, 1993, PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON GENETIC ALGORITHMS, P416
[6]  
GOLDBERG D, 1987, SIMPLE GENETIC ALGOF, P74
[7]  
Goldberg D. E., 1992, PARALLEL PROBLEM SOL, V2
[8]  
Khan N., 2003, Ph.D. thesis
[9]  
Knarr MR, 2003, IEEE C EVOL COMPUTAT, P1604
[10]  
WHITLEY LD, 1991, FDN GENETIC ALGORITH, P221