The non-separability of "dielectric" and "mechanical" friction in molecular systems: A simulation study

被引:56
作者
Kumar, PV
Maroncelli, M [1 ]
机构
[1] Penn State Univ, Dept Chem, University Pk, PA 16802 USA
[2] Armstrong World Ind Inc, Lancaster, PA 17604 USA
关键词
D O I
10.1063/1.481107
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Simulations of the time-dependent friction controlling rotational, translational, and vibrational motions of dipolar diatomic solutes in acetonitrile and methanol have been used to examine the nature of "dielectric" friction. The way in which electrical interactions increase the friction beyond that present in nonpolar systems is found to be rather different than what is anticipated by most theories of dielectric friction. Long-range electrostatic forces do not simply add an independent contribution to the friction due to short-ranged or "mechanical" sources (modeled here in terms of Lennard-Jones forces). Rather, the electrical and Lennard-Jones contributions are found to be strongly anticorrelated and not separable in any useful way. For some purposes, the mechanism by which electrical interactions increase friction is better viewed as a static electrostriction effect: electrical forces cause a subtle increase in atomic density in the solute's first solvation shell, which increases the amplitude of the force fluctuations derived from the Lennard-Jones interactions, i.e., the mechanical friction. However, electrical interactions also modify the dynamics of the friction, typically adding a long-time tail, which significantly increases the integral friction. Both of these effects must be included in a correct description of friction in the presence of polar interactions. (C) 2000 American Institute of Physics. [S0021-9606(00)51112-X].
引用
收藏
页码:5370 / 5381
页数:12
相关论文
共 48 条
[1]   TAMING THE EWALD SUM IN THE COMPUTER-SIMULATION OF CHARGED SYSTEMS [J].
ADAMS, DJ ;
DUBEY, GS .
JOURNAL OF COMPUTATIONAL PHYSICS, 1987, 72 (01) :156-176
[2]   A TEST OF CONTINUUM MODELS FOR DIELECTRIC FRICTION - ROTATIONAL DIFFUSION OF PHENOXAZINE DYES IN DIMETHYLSULFOXIDE [J].
ALAVI, DS ;
HARTMAN, RS ;
WALDECK, DH .
JOURNAL OF CHEMICAL PHYSICS, 1991, 94 (06) :4509-4520
[3]   ROTATIONAL DIELECTRIC FRICTION ON A GENERALIZED CHARGE-DISTRIBUTION [J].
ALAVI, DS ;
WALDECK, DH .
JOURNAL OF CHEMICAL PHYSICS, 1991, 94 (09) :6196-6202
[4]  
Allen M. P., 1987, COMPUTER SIMULATIONS, DOI [10.1093/oso/9780198803195.001.0001, DOI 10.1093/OSO/9780198803195.001.0001]
[5]   Polar and nonpolar solvation dynamics, ion diffusion, and vibrational relaxation: Role of biphasic solvent response in chemical dynamics [J].
Bagchi, B ;
Biswas, R .
ADVANCES IN CHEMICAL PHYSICS, VOL 109, 1999, 109 :207-433
[7]   VIBRATIONAL-RELAXATION OF I-2- IN WATER AND ETHANOL - MOLECULAR-DYNAMICS SIMULATION [J].
BENJAMIN, I ;
WHITNELL, RM .
CHEMICAL PHYSICS LETTERS, 1993, 204 (1-2) :45-52
[8]   THE LIMITING IONIC-CONDUCTIVITY OF NA+ AND CL- IONS IN AQUEOUS-SOLUTIONS - MOLECULAR-DYNAMICS SIMULATION [J].
BERKOWITZ, M ;
WAN, W .
JOURNAL OF CHEMICAL PHYSICS, 1987, 86 (01) :376-382
[9]   DYNAMIC FRICTION ON RIGID AND FLEXIBLE BONDS [J].
BERNE, BJ ;
TUCKERMAN, ME ;
STRAUB, JE ;
BUG, ALR .
JOURNAL OF CHEMICAL PHYSICS, 1990, 93 (07) :5084-5095
[10]   ANOMALOUS ION DIFFUSION IN DENSE DIPOLAR LIQUIDS [J].
BISWAS, R ;
ROY, S ;
BAGCHI, B .
PHYSICAL REVIEW LETTERS, 1995, 75 (06) :1098-1101