Quantum field theory on non-commutative space-times and the persistence of ultraviolet divergences

被引:146
作者
Chaichian, M [1 ]
Demichev, A
Presnajder, P
机构
[1] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland
[2] Helsinki Inst Phys, FIN-00014 Helsinki, Finland
[3] Moscow MV Lomonosov State Univ, Inst Nucl Phys, Moscow 119899, Russia
[4] Comenius Univ, Dept Theoret Phys, SK-84215 Bratislava, Slovakia
基金
芬兰科学院;
关键词
quantum field theory; ultraviolet divergences; regularization; non-commutative space-times;
D O I
10.1016/S0550-3213(99)00664-1
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study properties of a scalar quantum field theory on two-dimensional non-commutative space-times. Contrary to the common belief that non-commutativity of space-time would be a key to remove the ultraviolet divergences, we show that field theories on a non-commutative plane with the most natural Heisenberg-like commutation relations among coordinates or even on a non-commutative quantum plane with E-q(2) symmetry have ultraviolet divergences, while the theory on a non-commutative cylinder is ultraviolet finite. Thus, ultraviolet behavior of a field theory on non-commutative spaces is sensitive to the topology of the space-time, namely to its compactness. We present general arguments for the case of higher space-time dimensions and as well discuss the symmetry transformations of physical states on non-commutative space-times. (C) 2000 Elsevier Science B.V. Ail rights reserved.
引用
收藏
页码:360 / 390
页数:31
相关论文
共 25 条
[1]   WIGNER FUNCTION AND OTHER DISTRIBUTION-FUNCTIONS IN MOCK PHASE SPACES [J].
BALAZS, NL ;
JENNINGS, BK .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1984, 104 (06) :347-391
[2]  
Barut A., 1977, THEORY GROUP REPRESE
[3]   GENERAL CONCEPT OF QUANTIZATION [J].
BEREZIN, FA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1975, 40 (02) :153-174
[4]   Free q-Schrodinger equation from homogeneous spaces of the 2-dim Euclidean quantum group [J].
Bonechi, F ;
Ciccoli, N ;
Giachetti, R ;
Sorace, E ;
Tarlini, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 175 (01) :161-176
[5]  
CHAICHIAN M, 1996, INTRO QUANTUM GROUPS
[6]   GRAND UNIFICATION IN NONCOMMUTATIVE GEOMETRY [J].
CHAMSEDDINE, AH ;
FELDER, G ;
FROHLICH, J .
NUCLEAR PHYSICS B, 1993, 395 (03) :672-698
[7]  
Connes A., 1994, NONCOMMUTATIVE GEOME
[8]  
CONNES A, 1990, NUCL PHYS B, V11, P19
[9]   SPACETIME QUANTIZATION INDUCED BY CLASSICAL GRAVITY [J].
DOPLICHER, S ;
FREDENHAGEN, K ;
ROBERTS, JE .
PHYSICS LETTERS B, 1994, 331 (1-2) :39-44
[10]   THE QUANTUM STRUCTURE OF SPACETIME AT THE PLANCK-SCALE AND QUANTUM-FIELDS [J].
DOPLICHER, S ;
FREDENHAGEN, K ;
ROBERTS, JE .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 172 (01) :187-220