Dynamics on Leibniz manifolds

被引:48
作者
Ortega, JP
Planas-Bielsa, V
机构
[1] CNRS, UNSA, Inst Non Lineaire Nice, UMR 129, F-06560 Valbonne, France
[2] Univ Franche Comte, UFR Sci & Tech, CNRS, Dept Math Besancon, F-25030 Besancon, France
关键词
Leibniz manifolds; Hamiltonian mechanics; Poisson geometry; non-holonomic mechanics;
D O I
10.1016/j.geomphys.2004.01.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper shows that various well-known dynamical systems can be described as vector fields associated to smooth functions via a bracket that defines what we call a Leibniz structure. We show that gradient flows, some control and dissipative systems, and non-holonomically constrained simple mechanical systems, among other dynamical behaviors, can be described using this mathematical construction that generalizes the standard Poisson bracket currently used in Hamiltonian mechanics. The symmetries of these systems and the associated reduction procedures are described in detail. A number of examples illustrate the theoretical developments in the paper. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 27
页数:27
相关论文
共 34 条
[1]  
Abraham R., 1978, Foundations of mechanics
[2]   Geometric phases, reduction and Lie-Poisson structure for the resonant three-wave interaction [J].
Alber, MS ;
Luther, GG ;
Marsden, JE ;
Robbins, JM .
PHYSICA D, 1998, 123 (1-4) :271-290
[3]  
[Anonymous], 1974, Reports on Mathematical Physics, V5, P121, DOI 10.1016/0034-4877(74)90021-4
[4]  
[Anonymous], P S PURE MATH AMS
[5]  
[Anonymous], 1988, MANIFOLDS TENSOR ANA
[6]  
ARMS JM, 1991, MATH SCI R, V22, P33
[7]  
Bates L., 1993, Reports on Mathematical Physics, V32, P99, DOI 10.1016/0034-4877(93)90073-N
[8]  
BLANKENSTEIN G, 2003, P 2 IFAC WORKSH LAGR, P61
[9]   The Euler-Poincare equations and double bracket dissipation [J].
Bloch, A ;
Krishnaprasad, PS ;
Marsden, JE ;
Ratiu, TS .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 175 (01) :1-42
[10]   Nonholonomic mechanical systems with symmetry [J].
Bloch, AM ;
Krishnaprasad, PS ;
Marsden, JE ;
Murray, RM .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1996, 136 (01) :21-99