An improved binary particle swarm optimization for unit commitment problem

被引:156
作者
Yuan, Xiaohui [1 ]
Nie, Hao [1 ]
So, Anjun [1 ]
Wang, Liang [1 ]
Yuan, Yanbin [2 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Hydropower & Informat Engn, Wuhan 430074, Peoples R China
[2] Wuhan Univ Technol, Sch Resources & Environm Engn, Wuhan 430070, Peoples R China
基金
中国国家自然科学基金;
关键词
Unit commitment; Priority list; Particle swarm optimization; Heuristic search; LAGRANGIAN-RELAXATION; ALGORITHM;
D O I
10.1016/j.eswa.2008.10.047
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a new improved binary PSO (IBPSO) method to solve the unit commitment (UC) problem, which is integrated binary particle swarm optimization (BPSO) with lambda-iteration method. The IBPSO is improved by priority list based on the unit characteristics and heuristic search strategies to repair the spinning reserve and minimum up/down time constraints. To verify the advantages of the IBPSO method, the IBPSO is tested and compared to the other methods on the systems with the number of units in the range of 10-100. Numerical results demonstrate that the IBPSO is Superior to other methods reported in the literature in terms of lower production cost and shorter computational time. (c) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:8049 / 8055
页数:7
相关论文
共 23 条
[1]  
Balci H. H., 2004, International Journal of Applied Mathematics and Computer Science, V14, P411
[2]   Unit commitment by Lagrangian relaxation and genetic algorithms [J].
Cheng, CP ;
Liu, CW ;
Liu, GC .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2000, 15 (02) :707-714
[3]   The particle swarm - Explosion, stability, and convergence in a multidimensional complex space [J].
Clerc, M ;
Kennedy, J .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (01) :58-73
[4]   A BRANCH-AND-BOUND ALGORITHM FOR UNIT COMMITMENT [J].
COHEN, AI ;
YOSHIMURA, M .
IEEE TRANSACTIONS ON POWER APPARATUS AND SYSTEMS, 1983, 102 (02) :444-451
[5]   A solution to the unit-commitment problem using integer-coded genetic algorithm [J].
Damousis, IG ;
Bakirtzis, AG ;
Dokopoulos, PS .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2004, 19 (02) :1165-1172
[6]   Enhanced augmented Lagrangian Hopfield network for unit commitment [J].
Dieu, V. N. ;
Ongsakul, W. .
IEE PROCEEDINGS-GENERATION TRANSMISSION AND DISTRIBUTION, 2006, 153 (06) :624-632
[7]   New Lagrangian multiplier update approach for Lagrangian relaxation based unit commitment [J].
Feng, Xiaoming ;
Liao, Yuan .
ELECTRIC POWER COMPONENTS AND SYSTEMS, 2006, 34 (08) :857-866
[8]   An evolutionary programming solution to the unit commitment problem [J].
Juste, KA ;
Kita, H ;
Tanaka, E ;
Hasegawa, J .
IEEE TRANSACTIONS ON POWER SYSTEMS, 1999, 14 (04) :1452-1459
[9]   A genetic algorithm solution to the unit commitment problem [J].
Kazarlis, SA ;
Bakirtzis, AG ;
Petridis, V .
IEEE TRANSACTIONS ON POWER SYSTEMS, 1996, 11 (01) :83-90
[10]  
Kennedy J, 1997, IEEE SYS MAN CYBERN, P4104, DOI 10.1109/ICSMC.1997.637339