Inertial energy dissipation for weak solutions of incompressible Euler and Navier-Stokes equations

被引:281
作者
Duchon, J
Robert, R
机构
[1] Univ Lyon 1, CNRS, UMR5585, Anal Numer Lab, F-69622 Villeurbanne, France
[2] Inst Fourier, CNRS, UMR 5582, F-38402 St Martin Dheres, France
关键词
D O I
10.1088/0951-7715/13/1/312
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the local equation of energy for weak solutions of three-dimensional incompressible Navier-Stokes and Euler equations. We define a dissipation term D(u) which stems from an eventual lack of smoothness in the solution u. We give in passing a simple proof of Onsager's conjecture on energy conservation for the three-dimensional Euler equation, slightly weakening the assumption of Constantin et al. We suggest calling weak solutions with non-negative D(u) 'dissipative'.
引用
收藏
页码:249 / 255
页数:7
相关论文
共 10 条
[1]   ONSAGER CONJECTURE ON THE ENERGY-CONSERVATION FOR SOLUTIONS OF EULER EQUATION [J].
CONSTANTIN, P ;
TITI, ES ;
WEINAN, F .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 165 (01) :207-209
[2]   ENERGY-DISSIPATION WITHOUT VISCOSITY IN IDEAL HYDRODYNAMICS .1. FOURIER-ANALYSIS AND LOCAL ENERGY-TRANSFER [J].
EYINK, GL .
PHYSICA D-NONLINEAR PHENOMENA, 1994, 78 (3-4) :222-240
[3]  
Frisch U., 1995, TURBULENCE, DOI [10.1017/CBO9781139170666, DOI 10.1017/CBO9781139170666]
[4]   On the movement of a viscous fluid to fill the space [J].
Leray, J .
ACTA MATHEMATICA, 1934, 63 (01) :193-248
[5]  
Leray J., 1933, J. Math. Pures Appl, V12, P1
[6]  
Lions P.-L., 1998, Oxford Lecture Series in Mathematics and Its Applications, V2
[7]  
Onsager L., 1949, Il Nuovo Cimento (1943-1954), V6, P279, DOI [10.1007/BF02780991, 10.1007/BF02780988, DOI 10.1007/BF02780988, DOI 10.1007/BF02780991]
[8]   AN INVISCID FLOW WITH COMPACT SUPPORT IN SPACE-TIME [J].
SCHEFFER, V .
JOURNAL OF GEOMETRIC ANALYSIS, 1993, 3 (04) :343-401
[9]  
SHNIRELMAN AI, 1996, SEM EDP EC POL
[10]  
Yudovich V, 1963, Vychisl. Mat. Mat. Fiz., V3, P1032