Kinetic models for chemotaxis and their drift-diffusion limits

被引:171
作者
Chalub, FACC
Markowich, PA
Perthame, B
Schmeiser, C
机构
[1] Univ Vienna, Inst Math, A-1090 Vienna, Austria
[2] Ecole Normale Super, Dept Math & Applicat, UMR 8553, F-75230 Paris, France
[3] Vienna Tech Univ, Inst Angew & Numer Math, A-1040 Vienna, Austria
来源
MONATSHEFTE FUR MATHEMATIK | 2004年 / 142卷 / 1-2期
关键词
chemotaxis; drift-diffusion limits; kinetic models;
D O I
10.1007/s00605-004-0234-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Kinetic models for chemotaxis, nonlinearly coupled to a Poisson equation for the chemo-attractant density, are considered. Under suitable assumptions on the turning kernel (including models introduced by Othmer, Dunbar and Alt), convergence in the macroscopic limit to a drift-diffusion model is proven. The drift-diffusion models derived in this way include the classical Keller-Segel model. Furthermore, sufficient conditions for kinetic models are given such that finite-time-blow-up does not occur. Examples are given satisfying these conditions, whereas the macroscopic limit problem is known to exhibit finite-time-blow-up. The main analytical tools are entropy techniques for the macroscopic limit as well as results from potential theory for the control of the chemo-attractant density.
引用
收藏
页码:123 / 141
页数:19
相关论文
共 30 条
[2]  
ALT W, 1980, LECT NOTES BIOMATH, V38, P353
[3]  
[Anonymous], 1995, INTRO PARTIAL DIFFER
[4]   How signals are heard during bacterial chemotaxis: Protein-protein interactions in sensory signal propagation [J].
Bren, A ;
Eisenbach, M .
JOURNAL OF BACTERIOLOGY, 2000, 182 (24) :6865-6873
[5]   Diffusion, attraction and collapse [J].
Brenner, MP ;
Constantin, P ;
Kadanoff, LP ;
Schenkel, A ;
Venkataramani, SC .
NONLINEARITY, 1999, 12 (04) :1071-1098
[6]  
DAUTRAY R, 1988, ANAL MATH CALCUL NUM, pCH21
[7]   Integrating conflicting chemotactic signals: The role of memory in leukocyte navigation [J].
Foxman, EF ;
Kunkel, EJ ;
Butcher, EC .
JOURNAL OF CELL BIOLOGY, 1999, 147 (03) :577-587
[8]   Chemotactic collapse for the Keller-Segel model [J].
Herrero, MA ;
Velazquez, JJL .
JOURNAL OF MATHEMATICAL BIOLOGY, 1996, 35 (02) :177-194
[9]   Finite-time aggregation into a single point in a reaction-diffusion system [J].
Herrero, MA ;
Medina, E ;
Velazquez, JJL .
NONLINEARITY, 1997, 10 (06) :1739-1754
[10]   Self-similar blow-up for a reaction-diffusion system [J].
Herrero, MA ;
Medina, E ;
Velazquez, JJL .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 97 (1-2) :99-119