QM/MM study of mechanisms for compound I formation in the catalytic cycle of cytochrome P450cam

被引:101
作者
Zheng, Jingjing
Wang, Dongqi
Thiel, Walter
Shaik, Sason
机构
[1] Max Planck Inst Kohlenforsch, D-45470 Mulheim, Germany
[2] Hebrew Univ Jerusalem, Dept Organ Chem, IL-91904 Jerusalem, Israel
[3] Hebrew Univ Jerusalem, Lise Meitner Ctr Computat Quantum Chem, IL-91904 Jerusalem, Israel
关键词
D O I
10.1021/ja063439l
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In the catalytic cycle of cytochrome P450cam, after molecular oxygen binds as a ligand to the heme iron atom to yield a ferrous dioxygen complex, there are fast proton transfers that lead to the formation of the active species, Compound 1 (Cpd 1), which are not well understood because they occur so rapidly. In the present work, the conversion of the ferric hydroperoxo complex (Cpd 0) to Cpd 1 has been investigated by combined quantum-mechanical/molecular-mechanical (QM/MM) calculations. The residues Asp(251) and Glu(366) are considered as proton sources. In mechanism I, a proton is transported to the distal oxygen atom of the hydroperoxo group via a hydrogen bonding network to form protonated Cpd 0 (prot-Cpd0: FeOOH2), followed by heterolytic O-O bond cleavage that generates Cpd 1 and water. Although a local minimum is found for prot-Cpd0 in the Glu(366) channel, it is very high in energy (more than 20 kcal/mol above Cpd 0) and the barriers for its decay are only 3-4 kcal/mol (both toward Cpd 0 and Cpd 1). In mechanism II, an initial O-O bond cleavage followed by a concomitant proton and electron transfer yields Cpd 1 and water. The rate-limiting step in mechanism II is O-O cleavage with a barrier of about 13-14 kcal/mol. According to the QM/MM calculations, the favored low-energy pathway to Cpd 1 is provided by mechanism II in the Asp(251) channel. Cpd 0 and Cpd 1 are of similar energies, with a slight preference for Cpd 1.
引用
收藏
页码:13204 / 13215
页数:12
相关论文
共 48 条
[1]   ELECTRONIC-STRUCTURE CALCULATIONS ON WORKSTATION COMPUTERS - THE PROGRAM SYSTEM TURBOMOLE [J].
AHLRICHS, R ;
BAR, M ;
HASER, M ;
HORN, H ;
KOLMEL, C .
CHEMICAL PHYSICS LETTERS, 1989, 162 (03) :165-169
[2]   HETEROLYTIC VERSUS HOMOLYTIC PEROXIDE BOND-CLEAVAGE BY SPERM WHALE MYOGLOBIN AND MYOGLOBIN MUTANTS [J].
ALLENTOFF, AJ ;
BOLTON, JL ;
WILKS, A ;
THOMPSON, JA ;
DEMONTELLANO, PRO .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1992, 114 (25) :9744-9749
[3]   Combined quantum mechanical/molecular mechanical study on the pentacoordinated ferric and ferrous cytochrome P450cam complexes [J].
Altun, A ;
Thiel, W .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (03) :1268-1280
[4]   The "somersault" mechanism for the P-450 hydroxylation of hydrocarbons. The intervention of transient inverted metastable hydroperoxides [J].
Bach, RD ;
Dmitrenko, O .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (05) :1474-1488
[5]   Hybrid models for combined quantum mechanical and molecular mechanical approaches [J].
Bakowies, D ;
Thiel, W .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (25) :10580-10594
[6]   Probability distributions for complex systems: Adaptive umbrella sampling of the potential energy [J].
Bartels, C ;
Karplus, M .
JOURNAL OF PHYSICAL CHEMISTRY B, 1998, 102 (05) :865-880
[7]  
Bartels C, 1997, J COMPUT CHEM, V18, P1450, DOI 10.1002/(SICI)1096-987X(199709)18:12<1450::AID-JCC3>3.0.CO
[8]  
2-I
[9]   Linear scaling geometry optimisation and transition state search in hybrid delocalised internal coordinates [J].
Billeter, SR ;
Turner, AJ ;
Thiel, W .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2000, 2 (10) :2177-2186
[10]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217