Kir6.2 mutations causing neonatal diabetes prevent endocytosis of ATP-sensitive potassium channels

被引:40
作者
Mankouri, Jamel
Taneja, Tarvinder K.
Smith, Andrew J.
Ponnambalam, Sreenivasan
Sivaprasadarao, Asipu [1 ]
机构
[1] Univ Leeds, Inst Membrane & Syst Biol, Fac Biol Sci, Leeds LS2 9JT, W Yorkshire, England
[2] Univ Leeds, Fac Biol Sci, Inst Mol & Cellular Biol, Leeds, W Yorkshire, England
基金
英国医学研究理事会; 英国生物技术与生命科学研究理事会;
关键词
endocytosis; K-ATP channel; kir6.2; neonatal diabetes; PNDM;
D O I
10.1038/sj.emboj.7601275
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
ATP-sensitive potassium (KATP) channels couple the metabolic status of a cell to its membrane potential - a property that endows pancreatic beta-cells with the ability to regulate insulin secretion in accordance with changes in blood glucose. The channel comprises four subunits each of Kir6.2 and the sulphonylurea receptor (SUR1). Here, we report that KATP channels undergo rapid internalisation from the plasma membrane by clathrin-mediated endocytosis. We present several lines of evidence to demonstrate that endocytosis is mediated by a tyrosine based signal ((YSKF333)-Y-330) located in the carboxy-terminus of Kir6.2 and that SUR1 has no direct role. We show that genetic mutations, Y330C and F333I, which cause permanent neonatal diabetes mellitus, disrupt this motif and abrogate endocytosis of reconstituted mutant channels. The resultant increase in the surface density of KATP channels would predispose beta-cells to hyperpolarise and may account for reduced insulin secretion in these patients. The data imply that endocytosis of KATP channels plays a crucial role in the (patho)-physiology of insulin secretion.
引用
收藏
页码:4142 / 4151
页数:10
相关论文
共 38 条
  • [1] ATP-sensitive potassium channelopathies: focus on insulin secretion
    Ashcroft, FM
    [J]. JOURNAL OF CLINICAL INVESTIGATION, 2005, 115 (08) : 2047 - 2058
  • [2] Signals for sorting of transmembrane proteins to endosomes and lysosomes
    Bonifacino, JS
    Traub, LM
    [J]. ANNUAL REVIEW OF BIOCHEMISTRY, 2003, 72 : 395 - 447
  • [3] Defective trafficking and function of KATP channels caused by a sulfonylurea receptor 1 mutation associated with persistent hyperinsulinemic hypoglycemia of infancy
    Cartier, EA
    Conti, LR
    Vandenberg, CA
    Shyng, SL
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (05) : 2882 - 2887
  • [4] CHEN WJ, 1990, J BIOL CHEM, V265, P3116
  • [5] Association and stoichiometry of K-ATP channel subunits
    Clement, JP
    Kunjilwar, K
    Gonzalez, G
    Schwanstecher, M
    Panten, U
    AguilarBryan, L
    Bryan, J
    [J]. NEURON, 1997, 18 (05) : 827 - 838
  • [6] Aberrant trafficking of transmembrane proteins in human disease
    Cobbold, C
    Monaco, AP
    Sivaprasadarao, A
    Ponnambalam, S
    [J]. TRENDS IN CELL BIOLOGY, 2003, 13 (12) : 639 - 647
  • [7] Regulated portals of entry into the cell
    Conner, SD
    Schmid, SL
    [J]. NATURE, 2003, 422 (6927) : 37 - 44
  • [8] Hyperinsulinism in infancy: From basic science to clinical disease
    Dunne, MJ
    Cosgrove, KE
    Shepherd, RM
    Aynsley-Green, A
    Lindley, KJ
    [J]. PHYSIOLOGICAL REVIEWS, 2004, 84 (01) : 239 - 275
  • [9] The GGA proteins: key players in protein sorting at the trans-Golgi network
    Ghosh, P
    Kornfeld, S
    [J]. EUROPEAN JOURNAL OF CELL BIOLOGY, 2004, 83 (06) : 257 - 262
  • [10] Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes
    Gloyn, AL
    Pearson, ER
    Antcliff, JF
    Proks, P
    Bruining, GJ
    Slingerland, AS
    Howard, N
    Srinivasan, S
    Silva, JMCL
    Molnes, J
    Edghill, EL
    Frayling, TM
    Temple, IK
    Mackay, D
    Shield, JPH
    Sumnik, Z
    van Rhijn, A
    Wales, JKH
    Clark, P
    Gorman, S
    Aisenberg, J
    Ellard, S
    Njolstad, PR
    Ashcroft, FM
    Hattersley, AT
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2004, 350 (18) : 1838 - 1849