Microbial culture selection for bio-hydrogen production from waste ground wheat by dark fermentation

被引:59
作者
Argun, Hidayet [1 ]
Kargi, Fikret [1 ]
Kapdan, Ilgi K. [1 ]
机构
[1] Dokuz Eylul Univ, Dept Environm Engn, Izmir, Turkey
关键词
Bio-hydrogen; Anaerobic sludge; Clostridium sp; Dark fermentation; Wheat powder solution (WPS); CONTINUOUS BIOHYDROGEN PRODUCTION; DIGESTED-SLUDGE; STARCH; OPTIMIZATION; BATCH; PRETREATMENT; MICROFLORA; SUBSTRATE; BACTERIA; BIOMASS;
D O I
10.1016/j.ijhydene.2008.12.066
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hydrogen formation performances of different anaerobic bacteria were investigated in batch dark fermentation of waste wheat powder solution (WPS). Serum bottles containing wheat powder were inoculated with pure cultures of Clostridium acetobutylicum (CAB), Clostridium butyricum (CB), Enterobacter aerogenes (EA), heat-treated anaerobic sludge (ANS) and a mixture of those cultures (MIX). Cumulative hydrogen formation (CHF), hydrogen yield (HY) and specific hydrogen production rate (SHPR) were deter-mined for every culture. The heat-treated anaerobic sludge was found to be the most effective culture with a cumulative hydrogen formation of 560 ml, hydrogen yield of 223 ml H-2 g(-1) starch and a specific hydrogen production rate of 32.1 ml H-2 g(-1) h(-1). (C) 2008 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:2195 / 2200
页数:6
相关论文
共 26 条
[1]   Biohydrogen production by dark fermentation of wheat powder solution: Effects of C/N and C/P ratio on hydrogen yield and formation rate [J].
Argun, Hidayet ;
Kargi, Fikret ;
Kapdan, Flyi K. ;
Oztekin, Rukiye .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (07) :1813-1819
[2]   Batch dark fermentation of powdered wheat starch to hydrogen gas: Effects of the initial substrate and biomass concentrations [J].
Argun, Hidayet ;
Kargi, Fikret ;
Kapdan, Ilgi K. ;
Oztekin, Rukiye .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (21) :6109-6115
[3]   Continuous biohydrogen production in a CSTR using starch as a substrate [J].
Arooj, Muhammad Farhan ;
Han, Sun-Kee ;
Kim, Sang-Hyoun ;
Kim, Dong-Hoon ;
Shin, Hang-Sik .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (13) :3289-3294
[4]   Batch and continuous biohydrogen production from starch hydrolysate by Clostridium species [J].
Chen, Shiny-Der ;
Lee, Kuo-Shing ;
Lo, Yung-Chung ;
Chen, Wen-Ming ;
Wu, Ji-Fany ;
Lin, Chiu-Yue ;
Chang, Jo-Shu .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (07) :1803-1812
[5]   Advances in biological hydrogen production processes [J].
Das, Debabrata ;
Veziroglu, T. Nejat .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (21) :6046-6057
[6]   A COLORIMETRIC METHOD FOR THE DETERMINATION OF SUGARS [J].
DUBOIS, M ;
GILLES, K ;
HAMILTON, JK ;
REBERS, PA ;
SMITH, F .
NATURE, 1951, 168 (4265) :167-167
[7]   Thermodynamic study and optimization of hydrogen production by Enterobacter aerogenes [J].
Fabiano, B ;
Perego, P .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2002, 27 (02) :149-156
[8]  
Greenberg A., 2005, Standard Methods for the Examination of Water and Wastewater, V21st
[9]   Pretreatment of methanogenic granules for immobilized hydrogen fermentation [J].
Hu, Bo ;
Chen, Shulin .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2007, 32 (15) :3266-3273
[10]   Continuous fermentative hydrogen production from a wheat starch co-product by mixed microflora [J].
Hussy, I ;
Hawkes, FR ;
Dinsdale, R ;
Hawkes, DL .
BIOTECHNOLOGY AND BIOENGINEERING, 2003, 84 (06) :619-626