Gpr1, a putative G-protein-coupled receptor, regulates morphogenesis and hypha formation in the pathogenic fungus Candida albicans

被引:102
作者
Miwa, T
Takagi, Y
Shinozaki, M
Yun, CW
Schell, WA
Perfect, JR
Kumagai, H
Tamaki, H [1 ]
机构
[1] Kyoto Univ, Grad Sch Biostudies, Div Integrated Life Sci, Sakyo Ku, Kyoto 6068502, Japan
[2] Kyoto Univ, Grad Sch Agr, Div Appl Life Sci, Sakyo Ku, Kyoto 6068502, Japan
[3] Korea Univ, Sch Life Sci & Technol, Seoul, South Korea
[4] Duke Univ, Ctr Med, Dept Mol Genet & Microbiol, Durham, NC USA
[5] Duke Univ, Ctr Med, Dept Med, Durham, NC USA
关键词
D O I
10.1128/EC.3.4.919-931.2004
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
In response to various extracellular signals, the morphology of the human fungal pathogen Candida albicans. switches from yeast to hypha form. Here, we report that GPR1 encoding a putative G-protein-coupled receptor and GPA2 encoding a G(x subunit are required for hypha formation and morphogenesis in C albicans. Mutants lacking Gpr1 (gpr1/gpr1) or Gpa2 (gpa2/gpa2) are defective in hypha formation and morphogenesis on solid hypha-inducing media. These phenotypic defects in solid cultures are suppressed by exogenously added dibutyryl-cyclic AMP (dibutyryi-cAMP). Biochemical studies also reveal that GPR1 and GPA2 are required for a glucose-dependent increase in cellular cAMP. An epistasis analysis indicates that Gpr1 functions upstream of Gpa2 in the same signaling pathway, and a two-hybrid assay reveals that the carboxyl-terminal tail of Gpr1 interacts with Gpa2. Moreover, expression levels of HWP1 and ECE1, which are cAMP-dependent hyphaspecific genes, are reduced in both mutant strains. These findings support a model that Gpr1, as well as Gpa2, regulates hypha formation and morphogenesis in a cAMP-dependent manner. In contrast, GPR1 and GPA2 are not required for hypha formation in liquid fetal bovine serum (FBS) medium. Furthermore, the gprI and the gpa2 mutant strains are fully virulent in a mouse infection. These findings suggest that Gpr1 and Gpa2 are involved in the glucose-sensing machinery that regulates morphogenesis and hypha formation in solid media via a cAMP-dependent mechanism, but they are not required for hypha formation in liquid medium or during invasive candidiasis.
引用
收藏
页码:919 / 931
页数:13
相关论文
共 50 条
[1]   A METHOD FOR GENE DISRUPTION THAT ALLOWS REPEATED USE OF URA3 SELECTION IN THE CONSTRUCTION OF MULTIPLY DISRUPTED YEAST STRAINS [J].
ALANI, E ;
CAO, L ;
KLECKNER, N .
GENETICS, 1987, 116 (04) :541-545
[2]   Cryptococcus neoformans mating and virulence are regulated by the G-protein alpha subunit GPA1 and cAMP [J].
Alspaugh, JA ;
Perfect, JR ;
Heitman, J .
GENES & DEVELOPMENT, 1997, 11 (23) :3206-3217
[3]   Phospholipase C binds to the receptor-like GPR1 protein and controls pseudohyphal differentiation in Saccharomyces cerevisiae [J].
Ansari, K ;
Martin, S ;
Farkasovsky, M ;
Ehbrecht, IM ;
Küntzel, H .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (42) :30052-30058
[4]  
Bertram G, 1996, YEAST, V12, P115, DOI 10.1002/(SICI)1097-0061(199602)12:2<115::AID-YEA889>3.0.CO
[5]  
2-E
[6]   CLONING AND CHARACTERIZATION OF ECE1, A GENE EXPRESSED IN ASSOCIATION WITH CELL ELONGATION OF THE DIMORPHIC PATHOGEN CANDIDA-ALBICANS [J].
BIRSE, CE ;
IRWIN, MY ;
FONZI, WA ;
SYPHERD, PS .
INFECTION AND IMMUNITY, 1993, 61 (09) :3648-3655
[7]   Distinct and redundant roles of the two protein kinase A isoforms Tpk1p and Tpk2p in morphogenesis and growth of Candida albicans [J].
Bockmühl, DP ;
Krishnamurthy, S ;
Gerads, M ;
Sonneborn, A ;
Ernst, JF .
MOLECULAR MICROBIOLOGY, 2001, 42 (05) :1243-1257
[8]  
Braun BR, 2000, GENETICS, V156, P31
[9]  
Braun BR, 2000, GENETICS, V155, P57
[10]   Control of filament formation in Candida albicans by the transcriptional repressor TUP1 [J].
Braun, BR ;
Johnson, AD .
SCIENCE, 1997, 277 (5322) :105-109