A model for the adsorption of single metal ion solutes in aqueous solution onto activated carbon produced from pecan shells

被引:130
作者
Dastgheib, SA
Rockstraw, DA
机构
[1] Clemson Univ, Dept Environm Engn & Sci, Anderson, SC 29625 USA
[2] New Mexico State Univ, Dept Chem Engn, Las Cruces, NM 88003 USA
关键词
activated carbon; adsorption; modeling;
D O I
10.1016/S0008-6223(02)00037-4
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Adsorption isotherms for activated carbon made from pecan shells have been obtained at 25 degreesC and an approximate pH of 3 for a number of metal ion solutes. It was found that the Slips and Freundlich equations were satisfactory for explaining the experimental data. The correlation of metal ion adsorption with the solute parameters of metal ion electronegativity and first stability constant of the metal hydroxide was investigated. In the case of most of the metal ions studied, higher electronegativities and stability constants corresponded to the higher adsorption levels of metal ions onto the activated carbon. A correlation was developed that predicts the constants of the Freundlich equation from the selected parameters of the metal ions, and thus can predict the adsorption isotherms at constant pH. The developed correlation gives results with acceptable deviations from experimental data. A procedure is proposed for obtaining similar correlations for different conditions (temperature, pH, carbon type and dosage). The ratio of equivalent metal ions adsorbed to protons released is calculated for the studied metal ions over a range of concentrations. In most cases, particularly at low concentrations, this ratio is close to one, confirming that ion exchange of one proton with one equivalent metal ion is the dominant reaction mechanism. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1843 / 1851
页数:9
相关论文
共 23 条
[1]   ISOTHERM ANALYSES FOR SINGLE-COMPONENT AND MULTICOMPONENT METAL SORPTION ONTO LIGNITE [J].
ALLEN, SJ ;
BROWN, PA .
JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 1995, 62 (01) :17-24
[2]  
[Anonymous], 1998, NIST CRITICALLY SELE
[3]   Effect of activated carbon surface oxygen- and/or nitrogen-containing groups on adsorption of copper(II) ions from aqueous solution [J].
Biniak, S ;
Pakula, M ;
Szymanski, GS ;
Swiatkowski, A .
LANGMUIR, 1999, 15 (18) :6117-6122
[4]   Sorption kinetics for the removal of copper and zinc from effluents using bone char [J].
Cheung, CW ;
Porter, JF ;
McKay, G .
SEPARATION AND PURIFICATION TECHNOLOGY, 2000, 19 (1-2) :55-64
[5]  
Chu KH, 2000, J CHEM TECHNOL BIOT, V75, P1054, DOI 10.1002/1097-4660(200011)75:11<1054::AID-JCTB315>3.0.CO
[6]  
2-T
[7]   Pecan shell activated carbon: synthesis, characterization, and application for the removal of copper from aqueous solution [J].
Dastgheib, SA ;
Rockstraw, DA .
CARBON, 2001, 39 (12) :1849-1855
[8]  
Dean J.A., 1985, LANGES HDB CHEM, V13
[9]   ADSORPTION OF ZINC, CADMIUM, AND COPPER ON ACTIVATED CARBONS OBTAINED FROM AGRICULTURAL BY-PRODUCTS [J].
FERROGARCIA, MA ;
RIVERAUTRILLA, J ;
RODRIGUEZGORDILLO, J ;
BAUTISTATOLEDO, I .
CARBON, 1988, 26 (03) :363-373
[10]   Effect of chemical surface heterogeneity on the adsorption mechanism of dissolved aromatics on activated carbon [J].
Franz, M ;
Arafat, HA ;
Pinto, NG .
CARBON, 2000, 38 (13) :1807-1819