Repair and replication of oxidized DNA bases using modified oligodeoxyribonucleotides

被引:44
作者
Gasparutto, D [1 ]
Bourdat, AG [1 ]
D'Ham, C [1 ]
Duarte, V [1 ]
Romieu, A [1 ]
Cadet, J [1 ]
机构
[1] CEA, Dept Rech Fondamentale Matiere Condensee, Serv Inorgan & Biol, Lab Les Acides Nucleiques, F-38054 Grenoble 9, France
关键词
oxidized DNA bases; synthetic oligonucleotides; DNA N-glycosylases; DNA polymerases;
D O I
10.1016/S0300-9084(00)00347-3
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Modified oligodeoxyribonucleotides (ODNs) are powerful tools to assess the biological significance of oxidized lesions to DNA. For this purpose, we developed original synthetic pathways for the site-specific insertion of several oxidized bases into DNA fragments. Thus, the chemical solid-phase synthesis of ODNs using original strategies of protection and mild conditions of deprotection, as well as a specific post-oxidation approach of an unique nucleoside residue within the sequence have been applied. These two approaches of preparation allowed us to have access to a set of modified ODNs that contain a single modified nucleoside, i.e., N-(2-deoxy-beta-D-erythro-pentofuranosyl)formylamine (dF), 5-hydroxy-2'-deoxycytidine (5-OHdCyd), thymidine glycol (dTg), 5,6-dihydrothymidine (DHdThd), 2,2-diamino-4-[(2-deoxy-beta-D-erythro-pentofuranosyl)-amino]-5(2H)-oxazolone (dZ), N-(2-deoxy-beta-D-erythro-pentofuranosyl)cyanuric acid (dY), 5',8-cyclo-2'-deoxyguanosine (cyclodGuo) and 5',8-cyclo-2'-deoxyadenosine (cyclodAdo). The substrates were used to investigate recognition and removal of the lesions by bacterial DNA N-glycosylases, including endonuclease III (endo III) and Fapy glycosylase (Fpg). In addition, the DNA polymerase-mediated nucleotide incorporation opposite the damage was determined using modified ODNs as templates. (C) 2000 Societe francaise de biochimie et biologie moleculaire/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:19 / 24
页数:6
相关论文
共 69 条
[1]  
Aburatani H, 1997, CANCER RES, V57, P2151
[2]   ENDOGENOUS MUTAGENS AND THE CAUSES OF AGING AND CANCER [J].
AMES, BN ;
GOLD, LS .
MUTATION RESEARCH, 1991, 250 (1-2) :3-16
[3]   Cloning of a human homolog of the yeast OGG1 gene that is involved in the repair of oxidative DNA damage [J].
Arai, K ;
Morishita, K ;
Shinmura, K ;
Kohno, T ;
Kim, SR ;
Nohmi, T ;
Taniwaki, M ;
Ohwada, S ;
Yokota, J .
ONCOGENE, 1997, 14 (23) :2857-2861
[4]   PURIFICATION AND CHARACTERIZATION OF ESCHERICHIA-COLI ENDONUCLEASE-III FROM THE CLONED NTH GENE [J].
ASAHARA, H ;
WISTORT, PM ;
BANK, JF ;
BAKERIAN, RH ;
CUNNINGHAM, RP .
BIOCHEMISTRY, 1989, 28 (10) :4444-4449
[5]   Cloning and characterization of a functional human homolog of Escherichia coli endonuclease III [J].
Aspinwall, R ;
Rothwell, DG ;
RoldanArjona, T ;
Anselmino, C ;
Ward, CJ ;
Cheadle, JP ;
Sampson, JR ;
Lindahl, T ;
Harris, PC ;
Hickson, ID .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (01) :109-114
[6]   THE EXCISION OF AP SITES BY THE 3'-5' EXONUCLEASE ACTIVITY OF THE KLENOW FRAGMENT OF ESCHERICHIA-COLI DNA-POLYMERASE-I [J].
BAILLY, V ;
VERLY, WG .
FEBS LETTERS, 1984, 178 (02) :223-227
[7]   ESCHERICHIA-COLI ENDONUCLEASE-III IS NOT AN ENDONUCLEASE BUT A BETA-ELIMINATION CATALYST [J].
BAILLY, V ;
VERLY, WG .
BIOCHEMICAL JOURNAL, 1987, 242 (02) :565-572
[8]   3'- and 5'-strand cleavage reactions catalyzed by the Fpg protein from Escherichia coli occur via successive beta- and delta-elimination mechanisms, respectively [J].
Bhagwat, M ;
Gerlt, JA .
BIOCHEMISTRY, 1996, 35 (02) :659-665
[9]   SUBSTRATE-SPECIFICITY OF THE ESCHERICHIA-COLI FPG PROTEIN (FORMAMIDOPYRIMIDINE DNA GLYCOSYLASE) - EXCISION OF PURINE LESIONS IN DNA PRODUCED BY IONIZING-RADIATION OR PHOTOSENSITIZATION [J].
BOITEUX, S ;
GAJEWSKI, E ;
LAVAL, J ;
DIZDAROGLU, M .
BIOCHEMISTRY, 1992, 31 (01) :106-110
[10]   FORMAMIDOPYRIMIDINE-DNA GLYCOSYLASE OF ESCHERICHIA-COLI - CLONING AND SEQUENCING OF THE FPG STRUCTURAL GENE AND OVERPRODUCTION OF THE PROTEIN [J].
BOITEUX, S ;
OCONNOR, TR ;
LAVAL, J .
EMBO JOURNAL, 1987, 6 (10) :3177-3183