Hedging against Antiviral Resistance during the Next Influenza Pandemic Using Small Stockpiles of an Alternative Chemotherapy

被引:60
作者
Wu, Joseph T. [1 ,2 ]
Leung, Gabriel M. [1 ,2 ]
Lipsitch, Marc [3 ,4 ]
Cooper, Ben S. [5 ]
Riley, Steven [1 ,2 ]
机构
[1] Univ Hong Kong, Dept Community Med, Li Ka Shing Fac Med, Hong Kong, Hong Kong, Peoples R China
[2] Univ Hong Kong, Sch Publ Hlth, Li Ka Shing Fac Med, Hong Kong, Hong Kong, Peoples R China
[3] Harvard Univ, Sch Publ Hlth, Dept Epidemiol, Boston, MA 02115 USA
[4] Harvard Univ, Sch Publ Hlth, Dept Immunol & Infect Dis, Boston, MA 02115 USA
[5] Hlth Protect Agcy, Ctr Infect, Stat Modelling & Bioinformat Dept, London, England
来源
PLOS MEDICINE | 2009年 / 6卷 / 05期
基金
美国国家卫生研究院;
关键词
NEURAMINIDASE INHIBITOR RESISTANCE; UNITED-STATES; VIRUS-INFECTIONS; DRUG-RESISTANCE; IN-VITRO; OSELTAMIVIR; EMERGENCE; ZANAMIVIR; TRANSMISSION; STRATEGIES;
D O I
10.1371/journal.pmed.1000085
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: The effectiveness of single-drug antiviral interventions to reduce morbidity and mortality during the next influenza pandemic will be substantially weakened if transmissible strains emerge which are resistant to the stockpiled antiviral drugs. We developed a mathematical model to test the hypothesis that a small stockpile of a secondary antiviral drug could be used to mitigate the adverse consequences of the emergence of resistant strains. Methods and Findings: We used a multistrain stochastic transmission model of influenza to show that the spread of antiviral resistance can be significantly reduced by deploying a small stockpile (1% population coverage) of a secondary drug during the early phase of local epidemics. We considered two strategies for the use of the secondary stockpile: early combination chemotherapy (ECC; individuals are treated with both drugs in combination while both are available); and sequential multidrug chemotherapy (SMC; individuals are treated only with the secondary drug until it is exhausted, then treated with the primary drug). We investigated all potentially important regions of unknown parameter space and found that both ECC and SMC reduced the cumulative attack rate (AR) and the resistant attack rate (RAR) unless the probability of emergence of resistance to the primary drug p(A) was so low (less than 1 in 10,000) that resistance was unlikely to be a problem or so high (more than 1 in 20) that resistance emerged as soon as primary drug monotherapy began. For example, when the basic reproductive number was 1.8 and 40% of symptomatic individuals were treated with antivirals, AR and RAR were 67% and 38% under monotherapy if p(A) = 0.01. If the probability of resistance emergence for the secondary drug was also 0.01, then SMC reduced AR and RAR to 57% and 2%. The effectiveness of ECC was similar if combination chemotherapy reduced the probabilities of resistance emergence by at least ten times. We extended our model using travel data between 105 large cities to investigate the robustness of these resistance-limiting strategies at a global scale. We found that as long as populations that were the main source of resistant strains employed these strategies (SMC or ECC), then those same strategies were also effective for populations far from the source even when some intermediate populations failed to control resistance. In essence, through the existence of many wild-type epidemics, the interconnectedness of the global network dampened the international spread of resistant strains. Conclusions: Our results indicate that the augmentation of existing stockpiles of a single anti-influenza drug with smaller stockpiles of a second drug could be an effective and inexpensive epidemiological hedge against antiviral resistance if either SMC or ECC were used. Choosing between these strategies will require additional empirical studies. Specifically, the choice will depend on the safety of combination therapy and the synergistic effect of one antiviral in suppressing the emergence of resistance to the other antiviral when both are taken in combination.
引用
收藏
页数:11
相关论文
共 40 条
[1]   Emergence of drug resistance:: implications for antiviral control of pandemic influenza [J].
Alexander, Murray E. ;
Bowman, Christopher S. ;
Feng, Zhilan ;
Gardam, Michael ;
Moghadas, Seyed M. ;
Rost, Gergely ;
Wu, Jianhong ;
Yan, Ping .
PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2007, 274 (1619) :1675-1684
[2]  
Brammer L., 2008, Morbidity and Mortality Weekly Report, V57, P179
[3]   Modeling the worldwide spread of pandemic influenza: Baseline case and containment interventions [J].
Colizza, Vittoria ;
Barrat, Alain ;
Barthelemy, Marc ;
Valleron, Alain-Jacques ;
Vespignani, Alessandro .
PLOS MEDICINE, 2007, 4 (01) :95-110
[4]   Crystal structures of oseltamivir-resistant influenza virus neuraminidase mutants [J].
Collins, Patrick J. ;
Haire, Lesley F. ;
Lin, Yi Pu ;
Liu, Junfeng ;
Russell, Rupert J. ;
Walker, Philip A. ;
Skehel, John J. ;
Martin, Stephen R. ;
Hay, Alan J. ;
Gamblin, Steven J. .
NATURE, 2008, 453 (7199) :1258-U61
[5]   Delaying the international spread of pandemic influenza [J].
Cooper, Ben S. ;
Pitman, Richard J. ;
Edmunds, W. John ;
Gay, Nigel J. .
PLOS MEDICINE, 2006, 3 (06) :845-855
[6]   Infections With Oseltamivir-Resistant Influenza A(H1N1) Virus in the United States [J].
Dharan, Nila J. ;
Gubareva, Larisa V. ;
Meyer, John J. ;
Okomo-Adhiambo, Margaret ;
McClinton, Reginald C. ;
Marshall, Steven A. ;
George, Kirsten St. ;
Epperson, Scott ;
Brammer, Lynnette ;
Klimov, Alexander I. ;
Bresee, Joseph S. ;
Fry, Alicia M. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2009, 301 (10) :1034-1041
[7]   Strategies for mitigating an influenza pandemic [J].
Ferguson, Neil M. ;
Cummings, Derek A. T. ;
Fraser, Christophe ;
Cajka, James C. ;
Cooley, Philip C. ;
Burke, Donald S. .
NATURE, 2006, 442 (7101) :448-452
[8]   A population-dynamic model for evaluating the potential spread of drug-resistant influenza virus infections during community-based use of antivirals [J].
Ferguson, NM ;
Mallett, S ;
Jackson, H ;
Roberts, N ;
Ward, P .
JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, 2003, 51 (04) :977-990
[9]   Strategies for containing an emerging influenza pandemic in Southeast Asia [J].
Ferguson, NM ;
Cummings, DAT ;
Cauchemez, S ;
Fraser, C ;
Riley, S ;
Meeyai, A ;
Iamsirithaworn, S ;
Burke, DS .
NATURE, 2005, 437 (7056) :209-214
[10]   Mutations of neuraminidase implicated in neuraminidase inhibitors resistance [J].
Ferraris, Olivier ;
Lina, Bruno .
JOURNAL OF CLINICAL VIROLOGY, 2008, 41 (01) :13-19