Microbial arsenic: from geocycles to genes and enzymes

被引:153
作者
Mukhopadhyay, R
Rosen, BP
Pung, LT
Silver, S [1 ]
机构
[1] Univ Illinois, Dept Immunol & Microbiol, Chicago, IL 60612 USA
[2] Wayne State Univ, Sch Med, Dept Biochem & Mol Biol, Detroit, MI 48201 USA
关键词
arsenic resistance; arsenite oxidase; arsenate reductase; plasmid resistance; geocycle; methylation;
D O I
10.1016/S0168-6445(02)00112-2
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Arsenic compounds have been abundant at near toxic levels in the environment since the origin of life, In response, microbes have evolved mechanisms for arsenic resistance and enzymes that oxidize As(III) to As(V) or reduce As(V) to As(III). Formation and degradation of organoarsenicals, for example methylarsenic compounds, occur. There is a global arsenic geocycle, where microbial metabolism and mobilization (or immobilization) are important processes. Recent progress in studies of the ars operon (conferring resistance to As(III) and As(V)) in many bacterial types (and related systems in Archaea and yeast) and new understanding of arsenite oxidation and arsenate reduction by respiratory-chain-linked enzyme complexes has been substantial. The DNA sequencing and protein crystal structures have established the convergent evolution of three classes of arsenate reductases (that is classes of arsenate reductases are not of common evolutionary origin). Proposed reaction mechanisms in each case involve three cysteine thiols and S-As bond intermediates, so convergent evolution to similar mechanisms has taken place. (C) 2002 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:311 / 325
页数:15
相关论文
共 86 条
[1]   MICROBE GROWS BY REDUCING ARSENIC [J].
AHMANN, D ;
ROBERTS, AL ;
KRUMHOLZ, LR ;
MOREL, FMM .
NATURE, 1994, 371 (6500) :750-750
[2]   Associations between drinking water and urinary arsenic levels and skin lesions in Bangladesh [J].
Ahsan, H ;
Perrin, M ;
Rahman, A ;
Parvez, F ;
Stute, M ;
Zheng, Y ;
Milton, AH ;
Brandt-Rauf, P ;
van Geen, A ;
Graziano, J .
JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL MEDICINE, 2000, 42 (12) :1195-1201
[3]  
ANDERSON GL, 1992, J BIOL CHEM, V267, P23674
[4]  
Anderson GL, 2002, BOOK SOIL P, P343
[5]   Enzymatic methylation of arsenic species and other new approaches to arsenic toxicity [J].
Aposhian, HV .
ANNUAL REVIEW OF PHARMACOLOGY AND TOXICOLOGY, 1997, 37 :397-419
[6]   2 ADDITIONAL GLUTAREDOXINS EXIST IN ESCHERICHIA-COLI - GLUTAREDOXIN-3 IS A HYDROGEN DONOR FOR RIBONUCLEOTIDE REDUCTASE IN A THIOREDOXIN GLUTAREDOXIN-1 DOUBLE MUTANT [J].
ASLUND, F ;
EHN, B ;
MIRANDAVIZUETE, A ;
PUEYO, C ;
HOLMGREN, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (21) :9813-9817
[7]   ARSENIC INGESTION AND INTERNAL CANCERS - A REVIEW [J].
BATES, MN ;
SMITH, AH ;
HOPENHAYNRICH, C .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 1992, 135 (05) :462-476
[8]   Bacillus subtilis arsenate reductase is structurally and functionally similar to low molecular weight protein tyrosine phosphatases [J].
Bennett, MS ;
Guan, Z ;
Laurberg, M ;
Su, XD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (24) :13577-13582
[9]   Microbial methylation of metalloids: Arsenic, antimony, and bismuth [J].
Bentley, R ;
Chasteen, TG .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2002, 66 (02) :250-+
[10]   The Tat protein export pathway [J].
Berks, BC ;
Sargent, F ;
Palmer, T .
MOLECULAR MICROBIOLOGY, 2000, 35 (02) :260-274