Early presynaptic changes during plasticity in cultured hippocampal neurons

被引:16
作者
Ninan, Ipe
Liu, Shumin
Rabinowitz, Daniel
Arancio, Ottavio
机构
[1] Columbia Univ, Taub Inst, New York, NY 10032 USA
[2] Columbia Univ, Dept Pathol, New York, NY 10032 USA
[3] Columbia Univ, Dept Stat, New York, NY 10032 USA
关键词
cultures; plasticity; synapse; terminal;
D O I
10.1038/sj.emboj.7601318
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Long-lasting increase in synaptic strength is thought to underlie learning. An explosion of data has characterized changes in postsynaptic (pstS) AMPA receptor cycling during potentiation. However, changes occurring within the presynaptic (prS) terminal remain largely unknown. We show that appearance of new release sites during potentiation between cultured hippocampal neurons is due to (a) conversion of nonrecycling sites to recycling sites, (b) formation of new releasing sites from areas containing diffuse staining for the prS marker Vesicle-Associated Membrane Protein-2 and (c) budding of new recycling sites from previously existing recycling sites. In addition, potentiation is accompanied by a release probability increase in pre-existing boutons depending upon their individual probability. These prS changes precede and regulate fluorescence increase for pstS GFP-tagged-AMPA-receptor subunit GluR1. These results suggest that potentiation involves early changes in the prS terminal including remodeling and release probability increase of pre-existing synapses.
引用
收藏
页码:4361 / 4371
页数:11
相关论文
共 45 条
[1]   Assembly of presynaptic active zones from cytoplasmic transport packets [J].
Ahmari, SE ;
Buchanan, J ;
Smith, SJ .
NATURE NEUROSCIENCE, 2000, 3 (05) :445-451
[2]   AN EVALUATION OF CAUSES FOR UNRELIABILITY OF SYNAPTIC TRANSMISSION [J].
ALLEN, C ;
STEVENS, CF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (22) :10380-10383
[3]   Rapid increase in clusters of presynaptic proteins at onset of long-lasting potentiation [J].
Antonova, I ;
Arancio, O ;
Trillat, AC ;
Wang, HG ;
Zablow, L ;
Udo, H ;
Kandel, ER ;
Hawkins, RD .
SCIENCE, 2001, 294 (5546) :1547-1550
[4]   ACTIVITY-DEPENDENT LONG-TERM ENHANCEMENT OF TRANSMITTER RELEASE BY PRESYNAPTIC 3',5'-CYCLIC GMP IN CULTURED HIPPOCAMPAL-NEURONS [J].
ARANCIO, O ;
KANDEL, ER ;
HAWKINS, RD .
NATURE, 1995, 376 (6535) :74-80
[5]   Modulation of AMPA receptor unitary conductance by synaptic activity [J].
Benke, TA ;
Lüthi, A ;
Isaac, JTR ;
Collingridge, GL .
NATURE, 1998, 393 (6687) :793-797
[6]   Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type [J].
Bi, GQ ;
Poo, MM .
JOURNAL OF NEUROSCIENCE, 1998, 18 (24) :10464-10472
[7]   Induction of long-term potentiation is associated with major ultrastructural changes of activated synapses [J].
Buchs, PA ;
Muller, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (15) :8040-8045
[8]   Rapid redistribution of glutamate receptors contributes to long-term depression in hippocampal cultures [J].
Carroll, RC ;
Lissin, DV ;
von Zastrow, M ;
Nicoll, RA ;
Malenka, RC .
NATURE NEUROSCIENCE, 1999, 2 (05) :454-460
[9]   Postfusional regulation of cleft glutamate concentration during LTP at 'silent synapses' [J].
Choi, S ;
Klingauf, J ;
Tsien, RW .
NATURE NEUROSCIENCE, 2000, 3 (04) :330-336
[10]   Heterogeneity of release probability, facilitation, and depletion at central synapses [J].
Dobrunz, LE ;
Stevens, CF .
NEURON, 1997, 18 (06) :995-1008