SLEκ growth processes and conformal field theories

被引:60
作者
Bauer, M [1 ]
Bernard, D [1 ]
机构
[1] CEA Saclay, Serv Phys Theor Saclay, CEA DSM SPhT, CNRS, F-91191 Gif Sur Yvette, France
关键词
D O I
10.1016/S0370-2693(02)02423-1
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
SLEkappa stochastic processes describe growth of random curves which, in some cases, may be identified with boundaries of two-dimensional critical percolating clusters. By generalizing SLEkappa growths to formal Markov processes on the central extension of the 2d conformal group, we establish a connection between conformal field theories with central charges c(kappa) = 1/2(3kappa - 8) (6/kappa - 1) and zero modes-observables which are conserved in mean-of the SLEkappa stochastic processes. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:135 / 138
页数:4
相关论文
共 13 条
[1]  
BAUER M, UNPUB CONFORMAL FIEL
[2]   INFINITE CONFORMAL SYMMETRY IN TWO-DIMENSIONAL QUANTUM-FIELD THEORY [J].
BELAVIN, AA ;
POLYAKOV, AM ;
ZAMOLODCHIKOV, AB .
NUCLEAR PHYSICS B, 1984, 241 (02) :333-380
[3]   Slow modes in passive advection [J].
Bernard, D ;
Gawedzki, K ;
Kupiainen, A .
JOURNAL OF STATISTICAL PHYSICS, 1998, 90 (3-4) :519-569
[4]  
CARDY J, MATHPH0103018
[5]   CRITICAL PERCOLATION IN FINITE GEOMETRIES [J].
CARDY, JL .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (04) :L201-L206
[6]   Conformally invariant fractals and potential theory [J].
Duplantier, B .
PHYSICAL REVIEW LETTERS, 2000, 84 (07) :1363-1367
[7]  
DUPLANTIER B, IN PRESS J STAT PHYS
[8]  
GAWEDZKI K, 1995, PHYS REV LETT, V75, P3834, DOI 10.1103/PhysRevLett.75.3834
[10]  
RHODE S, MATHPR0106036