Monitoring reactive oxygen species formation and localisation in living cells by use of the fluorescent probe CM-H2DCFDA and confocal laser microscopy

被引:111
作者
Kristiansen, Kim Anker [1 ]
Jensen, Poul Erik [1 ]
Moller, Ian Max [2 ]
Schulz, Alexander [1 ]
机构
[1] Univ Copenhagen, Dept Plant Biol & Biotechnol, VKR Res Ctr Proact Plants, DK-1871 Frederiksberg C, Denmark
[2] Aarhus Univ, Dept Genet & Biotechnol, DK-8830 Tjele, Denmark
关键词
HYDROGEN-PEROXIDE; SINGLET OXYGEN; ARABIDOPSIS-THALIANA; STRESS RESPONSES; NITRIC-OXIDE; IN-VIVO; SIGNALING MOLECULES; LEAVES; PEROXISOMES; PLANTS;
D O I
10.1111/j.1399-3054.2009.01243.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Reactive oxygen species (ROS) develop as a consequence of wounding, light stress and chemical imbalances but act also as signals in living cells. The integrity of cells is seriously endangered, if ROS cannot be controlled by scavenging molecules and other repair mechanisms of the cell. For studying ROS development and signalling under stress, a reliable indicator is needed. We have tested the ROS sensitive dye 5-(and-6) chloromethyl-2',7' dichlorodihydrofluorescein diacetate acetyl ester (CM-H(2)DCFDA) using onion bulb scale and leaf epidermis as well as Arabidopsis leaves and protoplasts. ROS were generated by several fundamentally different methods-externally applied hydrogen peroxide, heat shock, high light or wounding. Confocal microscopy and fluorescence quantification over time showed that the indicator responds in an additive and dose-dependent manner. The response to externally applied hydrogen peroxide followed saturation kinetics, consistent with a channel-mediated uptake of the stressor across the plasma membrane. An inherent problem of the tested indicator was the uneven uptake in tissues, as compared with protoplasts, making it difficult to discriminate an uneven indicator distribution from an uneven ROS distribution. However, in protoplasts and under carefully designed preparation conditions CM-H(2)DCFDA is a useful general ROS indicator. Subcellularly, the de-esterified probe localised to the cytosol, to mitochondria and to chloroplasts.
引用
收藏
页码:369 / 383
页数:15
相关论文
共 48 条
[1]   Two p-type ATPases are required for copper delivery in Arabidopsis thaliana chloroplasts [J].
Abdel-Ghany, SE ;
Müller-Moulé, P ;
Niyogi, KK ;
Pilon, M ;
Shikanai, T .
PLANT CELL, 2005, 17 (04) :1233-1251
[2]  
Abramoff M. D., 2004, BIOPHOTONICS INT, V11, P36, DOI DOI 10.1201/9781420005615.AX4
[3]   Two distinct sources of elicited reactive oxygen species in tobacco epidermal cells [J].
Allan, AC ;
Fluhr, R .
PLANT CELL, 1997, 9 (09) :1559-1572
[4]  
[Anonymous], 2009, Molecular Probes Handbook
[5]   Genetically encoded fluorescent indicator for intracellular hydrogen peroxide [J].
Belousov, VV ;
Fradkov, AF ;
Lukyanov, KA ;
Staroverov, DB ;
Shakhbazov, KS ;
Terskikh, AV ;
Lukyanov, S .
NATURE METHODS, 2006, 3 (04) :281-286
[6]   Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes [J].
Bienert, Gerd P. ;
Moller, Anders L. B. ;
Kristiansen, Kim A. ;
Schulz, Alexander ;
Moller, Ian M. ;
Schjoerring, Jan K. ;
Jahn, Thomas P. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2007, 282 (02) :1183-1192
[7]   Membrane transport of hydrogen peroxide [J].
Bienert, Gerd P. ;
Schjoerring, Jan K. ;
Jahn, Thomas P. .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2006, 1758 (08) :994-1003
[8]   The oxidation of 2′,7′-dichlorofluorescin to reactive oxygen species:: A self-fulfilling prophesy? [J].
Bonini, MG ;
Rota, C ;
Tomasi, A ;
Mason, RP .
FREE RADICAL BIOLOGY AND MEDICINE, 2006, 40 (06) :968-975
[9]   A pharmacological approach to test the diffusible signal activity of reactive oxygen intermediates in elicitor-treated tobacco leaves [J].
Costet, L ;
Dorey, S ;
Fritig, B ;
Kauffmann, S .
PLANT AND CELL PHYSIOLOGY, 2002, 43 (01) :91-98
[10]   Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes [J].
del Río, LA ;
Corpas, FJ ;
Sandalio, LM ;
Palma, JM ;
Gómez, M ;
Barroso, JB .
JOURNAL OF EXPERIMENTAL BOTANY, 2002, 53 (372) :1255-1272