Dynamic changes of striatal and extrastriatal abnormalities in glutaric aciduria type I

被引:116
作者
Harting, Inga [2 ]
Neumaier-Probst, Eva [3 ]
Seitz, Angelika [2 ]
Maier, Esther M. [4 ]
Assmann, Birgit [5 ]
Baric, Ivo [6 ]
Troncoso, Monica [7 ]
Muehlhausen, Chris [8 ]
Zschocke, Johannes [9 ]
Boy, Nikolas P. S. [1 ]
Hoffmann, Georg F. [1 ]
Garbade, Sven F. [1 ]
Koelker, Stefan [1 ]
机构
[1] Univ Childrens Hosp Heidelberg, Div Inborn Metab Dis, Dept Gen Pediat, D-69120 Heidelberg, Germany
[2] Heidelberg Univ, Dept Neuroradiol, Heidelberg, Germany
[3] Heidelberg Univ, Dept Neuroradiol, Univ Hosp Mannheim, D-6800 Mannheim, Germany
[4] Univ Munich, Dept Biochem Genet & Mol Biol, Dr von Hauner Childrens Hosp, Munich, Germany
[5] Univ Dusseldorf, Dept Gen Pediat, Univ Childrens Hosp, Dusseldorf, Germany
[6] Univ Hosp Ctr, Dept Pediat, Zagreb, Croatia
[7] Hosp Clin San Borja Arriaran, Serv Neurol Infantil, Santiago, Chile
[8] Univ Med Ctr Hamburg Eppendorf, Dept Pediat, Hamburg, Germany
[9] Med Univ Innsbruck, Inst Human Genet & Clin Genet, Innsbruck, Austria
关键词
metabolism; striatum; maturation; neuroradiology; brain injury; COA DEHYDROGENASE-DEFICIENCY; TIGHT JUNCTION PROTEINS; ACIDEMIA TYPE-I; 3-HYDROXYGLUTARIC ACID; MOUSE MODEL; ENCEPHALOPATHIC CRISES; NATURAL-HISTORY; GERMINAL MATRIX; BLOOD-VESSELS; ADULT;
D O I
10.1093/brain/awp112
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
In glutaric aciduria type I, an autosomal recessive disease of mitochondrial lysine, hydroxylysine and tryptophan catabolism, striatal lesions are characteristically induced by acute encephalopathic crises during a finite period of brain development (age 3-36 months). The frequency of striatal injury is significantly less in patients diagnosed as asymptomatic newborns by newborn screening. Most previous studies have focused on the onset and mechanism of striatal injury, whereas little is known about neuroradiological abnormalities in pre-symptomatically diagnosed patients and about dynamic changes of extrastriatal abnormalities. Thus, the major aim of the present retrospective study was to improve our understanding of striatal and extrastriatal abnormalities in affected individuals including those diagnosed by newborn screening. To this end, we systematically analysed magnetic resonance imagings (MRIs) in 38 patients with glutaric aciduria type I diagnosed before or after the manifestation of neurological symptoms. To identify brain regions that are susceptible to cerebral injury during acute encephalopathic crises, we compared the frequency of magnetic resonance abnormalities in patients with and without such crises. Major specific changes after encephalopathic crises were found in the putamen (P < 0.001), nucleus caudatus (P < 0.001), globus pallidus (P = 0.012) and ventricles (P = 0.001). Analysis of empirical cumulative distribution frequencies, however, demonstrated that isolated pallidal abnormalities did not significantly differ over time in both groups (P = 0.544) suggesting that isolated pallidal abnormalities are not induced by acute crises--in contrast to striatal abnormalities. The manifestation of motor disability was associated with signal abnormalities in putamen, caudate, pallidum and ventricles. In addition, we found a large number of extrastriatal abnormalities in patients with and without preceding encephalophatic crises. These abnormalities include widening of anterior temporal and sylvian CSF spaces, pseudocysts, signal changes of substantia nigra, nucleus dentatus, thalamus, tractus tegmentalis centralis and supratentorial white matter as well as signs of delayed maturation (myelination and gyral pattern). In contrast to the striatum, extrastriatal abnormalities were variable and could regress or even normalize with time. This includes widening of sylvian fissures, delayed maturation, pallidal signal changes and pseudocysts. Based on these results, we hypothesize that neuroradiological abnormalities and neurological symptoms in glutaric aciduria type I can be explained by overlaying episodes of cerebral alterations including maturational delay of the brain in utero, acute striatal injury during a vulnerable period in infancy and chronic progressive changes that may continue lifelong. This may have widespread consequences for the pathophysiological understanding of this disease, long-term outcomes and therapeutic considerations.
引用
收藏
页码:1764 / 1782
页数:19
相关论文
共 57 条
[1]   Immunolocalization of tight junction proteins in blood vessels in human germinal matrix and cortex [J].
Anstrom, John A. ;
Thore, Clara R. ;
Moody, Dixon M. ;
Brown, William R. .
HISTOCHEMISTRY AND CELL BIOLOGY, 2007, 127 (02) :205-213
[2]   Adult onset glutaric aciduria type I presenting with a leukoencephalopathy [J].
Bähr, O ;
Mader, I ;
Zschocke, J ;
Dichgans, J ;
Schulz, JB .
NEUROLOGY, 2002, 59 (11) :1802-1804
[3]   Development of tight junction molecules in blood vessels of germinal matrix, cerebral cortex, and white matter [J].
Ballabh, P ;
Hu, FO ;
Kumarasiri, M ;
Braun, A ;
Nedergaard, M .
PEDIATRIC RESEARCH, 2005, 58 (04) :791-798
[4]   Sensitivity and specificity of free and total glutaric acid and 3-hydroxyglutaric acid measurements by stable-isotope dilution assays for the diagnosis of glutaric aciduria type I [J].
Baric, I ;
Wagner, L ;
Feyh, P ;
Liesert, M ;
Buckel, W ;
Hoffmann, GF .
JOURNAL OF INHERITED METABOLIC DISEASE, 1999, 22 (08) :867-881
[5]  
Barkovich A.J., 2000, Pediatric neuroimaging, V3rd
[6]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[7]   Glutaric aciduria type I: outcome following detection by newborn screening [J].
Bijarnia, S. ;
Wiley, V. ;
Carpenter, K. ;
Christodoulou, J. ;
Ellaway, C. J. ;
Wilcken, B. .
JOURNAL OF INHERITED METABOLIC DISEASE, 2008, 31 (04) :503-507
[8]  
BRISMAR J, 1995, AM J NEURORADIOL, V16, P675
[9]   Use of tandem mass spectrometry for multianalyte screening of dried blood specimens from newborns [J].
Chace, DH ;
Kalas, TA ;
Naylor, EW .
CLINICAL CHEMISTRY, 2003, 49 (11) :1797-1817
[10]   NEUROPATHOLOGY IN GLUTARIC ACIDEMIA TYPE-1 [J].
CHOW, CW ;
HAAN, EA ;
GOODMAN, SI ;
ANDERSON, RM ;
EVANS, WA ;
KLEINSCHMIDTDEMASTERS, BK ;
WISE, G ;
MCGILL, JJ ;
DANKS, DM .
ACTA NEUROPATHOLOGICA, 1988, 76 (06) :590-594