Canopy CO2 enrichment permits tracing the fate of recently assimilated carbon in a mature deciduous forest

被引:108
作者
Keel, Sonja G.
Siegwolf, Rolf T. W. [1 ]
Koerner, Christian
机构
[1] Paul Scherrer Inst, Lab Atmospher Chem, CH-5232 Villigen, Switzerland
[2] Univ Basel, Inst Bot, CH-4056 Basel, Switzerland
关键词
carbon allocation; free-air CO2 enrichment (FACE); fungi; rhizosphere; roots; soil; soil respiration; stable isotopes;
D O I
10.1111/j.1469-8137.2006.01831.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
How rapidly newly assimilated carbon (C) is invested into recalcitrant structures of forests, and how closely C pools and fluxes are tied to photosynthesis, is largely unknown. A crane and a purpose-built free-air CO2 enrichment (FACE) system permitted us to label the canopy of a mature deciduous forest with C-13-depleted CO2 for 4 yr and continuously trace the flow of recent C through the forest without disturbance. Potted C-4 grasses in the canopy ('isometers') served as a reference for the C-isotope input signal. After four growing seasons, leaves were completely labelled, while newly formed wood (tree rings) still contained 9% old C. Distinct labels were found in fine roots (38%) and sporocarps of mycorrhizal fungi (62%). Soil particles attached to fine roots contained 9% new C, whereas no measurable signal was detected in bulk soil. Soil-air CO2 consisted of 35% new C, indicating that considerable amounts of assimilates were rapidly returned back to the atmosphere. These data illustrate a relatively slow dilution of old mobile C pools in trees, but a pronounced allocation of very recent assimilates to C pools of short residence times.
引用
收藏
页码:319 / 329
页数:11
相关论文
共 58 条
[1]   Estimating "autotrophic" belowground respiration in spruce and beech forests:: decreases following girdling [J].
Andersen, CP ;
Nikolov, I ;
Nikolova, P ;
Matyssek, R ;
Häberle, KH .
EUROPEAN JOURNAL OF FOREST RESEARCH, 2005, 124 (03) :155-163
[2]   Separation of root respiration from total soil respiration using carbon-13 labeling during Free-Air Carbon Dioxide Enrichment (FACE) [J].
Andrews, JA ;
Harrison, KG ;
Matamala, R ;
Schlesinger, WH .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1999, 63 (05) :1429-1435
[3]   Growth and phenology of mature temperate forest trees in elevated CO2 [J].
Asshoff, R ;
Zotz, G ;
Körner, C .
GLOBAL CHANGE BIOLOGY, 2006, 12 (05) :848-861
[4]   Variation in the degree of coupling between δ13C of phloem sap and ecosystem respiration in two mature Nothofagus forests [J].
Barbour, MM ;
Hunt, JE ;
Dungan, RJ ;
Turnbull, MH ;
Brailsford, GW ;
Farquhar, GD ;
Whitehead, D .
NEW PHYTOLOGIST, 2005, 166 (02) :497-512
[5]   Tree root and soil heterotrophic respiration as revealed by girdling of boreal Scots pine forest:: extending observations beyond the first year [J].
BhupinderpalSingh ;
Nordgren, A ;
Löfvenius, MO ;
Högberg, MN ;
Mellander, PE ;
Högberg, P .
PLANT CELL AND ENVIRONMENT, 2003, 26 (08) :1287-1296
[6]   Genetic structure of a natural population of the ectomycorrhizal fungus Suillus pungens [J].
Bonello, P ;
Bruns, TD ;
Gardes, M .
NEW PHYTOLOGIST, 1998, 138 (03) :533-542
[7]   13C content of ecosystem respiration is linked to precipitation and vapor pressure deficit [J].
Bowling, DR ;
McDowell, NG ;
Bond, BJ ;
Law, BE ;
Ehleringer, JR .
OECOLOGIA, 2002, 131 (01) :113-124
[8]   Carbon isotope composition of C-4 grasses is influenced by light and water supply [J].
Buchmann, N ;
Brooks, JR ;
Rapp, KD ;
Ehleringer, JR .
PLANT CELL AND ENVIRONMENT, 1996, 19 (04) :392-402
[9]   Hydraulic lift: Consequences of water efflux from the roots of plants [J].
Caldwell, MM ;
Dawson, TE ;
Richards, JH .
OECOLOGIA, 1998, 113 (02) :151-161
[10]   Elevated CO2 reduces sap flux in mature deciduous forest trees [J].
Cech, PG ;
Pepin, S ;
Körner, C .
OECOLOGIA, 2003, 137 (02) :258-268