The sarcoplasmic reticulum in muscle fatigue and disease:: Role of the sarco(endo)plasmic reticulum Ca2+-ATPase

被引:68
作者
Tupling, AR [1 ]
机构
[1] Univ Waterloo, Dept Kinesiol, Waterloo, ON N2L 3G1, Canada
来源
CANADIAN JOURNAL OF APPLIED PHYSIOLOGY-REVUE CANADIENNE DE PHYSIOLOGIE APPLIQUEE | 2004年 / 29卷 / 03期
关键词
calcium release; calcium uptake; muscle relaxation; low-frequency fatigue; Brody disease;
D O I
10.1139/h04-021
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Skeletal muscles induced to contract repeatedly respond with a progressive loss in their ability to generate a target force or power This condition is known simply as fatigue. Commonly, fatigue may persist for prolonged periods of time, particularly at low activation frequencies, which is called low-frequency fatigue. Failure to activate the contractile apparatus with the appropriate intracellular free calcium ([Ca2+](f)) signal contributes to fatigue but the precise mechanisms involved are unknown. The sarcoplasmic reticulum (SR) is the major organelle in muscle that is responsible for the regulation of [Ca-f(2+]), and numerous studies have shown that SR function, both Ca2+ release and Ca2+ uptake, is impaired following fatiguing contractile activity. The major aim of this review is to provide insight into the various cellular mechanisms underlying the alterations in SR Ca2+ Cycling and cytosolic [Ca2+](f) that are associated both with the development of fatigue during repeated muscle contraction and with low-frequency or long-lasting fatigue. The primary focus will be on the role of the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) in normal muscle-function, fatigue, and disease.
引用
收藏
页码:308 / 329
页数:22
相关论文
共 108 条
[1]   Muscle fatigue: The role of intracellular calcium stores [J].
Allen, DG ;
Kabbara, AA ;
Westerblad, H .
CANADIAN JOURNAL OF APPLIED PHYSIOLOGY-REVUE CANADIENNE DE PHYSIOLOGIE APPLIQUEE, 2002, 27 (01) :83-96
[2]   INTRACELLULAR CALCIUM AND TENSION DURING FATIGUE IN ISOLATED SINGLE MUSCLE-FIBERS FROM XENOPUS-LAEVIS [J].
ALLEN, DG ;
LEE, JA ;
WESTERBLAD, H .
JOURNAL OF PHYSIOLOGY-LONDON, 1989, 415 :433-458
[3]   MUSCLE-CELL FUNCTION DURING PROLONGED ACTIVITY - CELLULAR MECHANISMS OF FATIGUE [J].
ALLEN, DG ;
LANNERGREN, J ;
WESTERBLAD, H .
EXPERIMENTAL PHYSIOLOGY, 1995, 80 (04) :497-527
[4]   Sarcolipin inhibits polymerization of phospholamban to induce superinhibition of sarco(endo)plasmic reticulum Ca2+-ATPases (SERCAs) [J].
Asahi, M ;
Kurzydlowski, K ;
Tada, M ;
MacLennan, DH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (30) :26725-26728
[5]   Increased muscle glycogen content is associated with increased capacity to respond to T-system depolarisation in mechanically skinned skeletal muscle fibres from the rat [J].
Barnes, M ;
Gibson, LM ;
Stephenson, DG .
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 2001, 442 (01) :101-106
[6]   DIET MUSCLE GLYCOGEN AND PHYSICAL PERFORMANCE [J].
BERGSTROM, J ;
HERMANSEN, L ;
HULTMAN, E ;
SALTIN, B .
ACTA PHYSIOLOGICA SCANDINAVICA, 1967, 71 (2-3) :140-+
[7]   CHANGES IN MUSCLE CONTRACTILE PROPERTIES AND NEURAL CONTROL DURING HUMAN MUSCULAR FATIGUE [J].
BIGLANDRITCHIE, B ;
WOODS, JJ .
MUSCLE & NERVE, 1984, 7 (09) :691-699
[8]   Low [ATP] and elevated [Mg2+] reduce depolarization-induced Ca2+ release in rat skinned skeletal muscle fibres [J].
Blazev, R ;
Lamb, GD .
JOURNAL OF PHYSIOLOGY-LONDON, 1999, 520 (01) :203-215
[9]   Impaired calcium pump function does not slow relaxation in human skeletal muscle after prolonged exercise [J].
Booth, J ;
McKenna, MJ ;
Ruell, PA ;
Gwinn, TH ;
Davis, GM ;
Thompson, MW ;
Harmer, AR ;
Hunter, SK ;
Sutton, JR .
JOURNAL OF APPLIED PHYSIOLOGY, 1997, 83 (02) :511-521